N

UMENTATION PAGE

AD -A241 948 :

i,

O T T —

LR R Bl B I L

R e

Tyt R L neryt Ty

EXTEE PR i)

Form Agproved,
OMB No. 2704801

2. REPORT DATE 3. SEPGRT TYPE
i FINAL, 01 JAN 89 TO 30 APR 90

*ND DATES COVERED

1. TiTLE ANO SUBTITLE

EVENT ORIENTED DESIGN AND ADAPTIVE MULTIPROCESSING

T STUNDING NUANSIS
'AFOSR-89-0157
(61102F, 2304/A2

6. AUTHOR(S)

Dr David Lefkovitz

7 PERFORMING ORGANIZATION MAME(S) YND 7 RE3:1E3)
Dept of Computer and Information Sciences
Temple University

Philadelphia PA 19122

AFOSR-TR-

B. PERFORMING CrRCAMZATICON
REPCRT NUMBER

f1 0795

9. SPCNSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
Bldg 410
Bolling AFB DC 20332-6448

10. SPONSORING MONITORING
AGENCY REPORT NUAMBER

AFOSR-85~-0157

11, SUPPLEMENTARY NOTES

*

123 OISTRIBUTION. AVANLABILITY STATEIENT

Approved for public release;
distribution unlimited.

12b. DISTRIBUTICN CCDE |

3. ABSTRACT (Maxrmum 270 s 2rds)

real-time systems.

The work performed under this grant relates to the performance design of
Performance requirements specify time and reliability
factors such as response time, throughput, precision, and fail safe/recovery
characteristics.A design method, called Event Oriented Design and a
corresponding tool, called the Embedded Software Design Simulator (ESDS),

| was developed.
)

! o & —
o OCT 1 11991 = ,
=8 L] f/ﬂl/lh,wildl'.’,'.ll:/llf
; =\ TrT TEaAS - ﬁ o - Y P
o ; h ; TS i
o . e e

AT CLAZI TN 5T B B IR Y4 i 1 N
UNCLAééi}IED { UNéLASSIFIED ZUNCLASéifIED SAR

EVENT ORIENTED DESIGN AND ADAPTIVE MULTIPROCESSING

FINAL REPORT

Principal Investigator
Dr. David Lefkovitz

Grant No. AFOSR-89-0157

Anugust 31, 1991

Submitted To
Department of the Air Force
Air Force Office of Scientific Research
Bolling Air Force Base, DC 20332-6448

By
Department of Computer and Information Science

Temple University
Philadelphia, PA 19122

Research in Design Methodology:

Event Oriented Design
Abstract

The work performed under this contract relates to the performance design of real-time
(RT) systems. Performance requirements specify time and reliability factors such as
response time, throughput, precision, and fail safe/recovry characteristics. The most
fundamental performance requirement of an RT system is response time, which is
defined as the time elapsed between the appearance of a particular system input and the
appearance of a specified output. In RT systems response time can be as critical as
algorithmic or functional correctness.

The research performed under this contract had two major objectives. One was to
analyze the current state of research in RT design, particularly for mixed
asynchronous/synchrouous systems, and to map it into a classification. The classification
could then serve two purposes. One, to determine whether there exists a unifying
concept in RT design; ilie oihe:, to determine whether there are serious gaps in our
knowledge about thesc systems.

The second objective of the contract was to develop a design technique to handle a part
of the problem indicated as lacking by the classification.

The Classification views software development based upon the way software is actually
structured. It encompasses all software types but then focuses more specifically on real-
time software. It relates various methods of analysis and design that have appeared in
the literature to respective classes, thus revealing how the facets of sofware development
are covered by the various published methods.

What results from the first objective is that there does not appear to be a unified
concept or theory of software, much less RT software development. Rather, there are
distinct facets of the problem that are addressed by different researchers. Some facets
are covered more throroughly than others, and some gaps exist. The research, under
objective 2, addresses two areas in which these gaps appear to exist within the RT
software subclassification. One relates to a class of systems called communicating
multitasking systems. A design method, called Event Oriented Design and a
corresponding tool, called the Embedded Software Design Simulator (ESDS), was
developed. The other gap is related to scheduling and allocation algorithms for a
particular class called multistate task activation systems. e —

Accesion ror i
NTIS CRAL \h
DTIC 1AL o
Urannsounced i

Justficition

By o
Dt tio]

AV N e L0 IS

(VAR N

Dia \ Spcpﬁa i
Al

Research in Design Methodology:
Event Oriented Design

Table of Contents
SECTION
1. Introduction

2. A Classification Approach to the Description of
Scftware Development
2.1 Approach to the Development of the Classification
2.2 Definition of a Real-Time System
2.3 The Classification
2.4 Real-Time Systems
2.5 Non Real-Time Systems
2.6 Common Characterizations of all Software Systems
2.7 Software Metrics

3. Performance Specification and Design of RT Systems

4. Design for Factor 2: Intertask Communication
4.1 Event Oriented Design and the Embedded
Software Design Simulator (ESDS)
4.2 Steps in the Event Oriented Design Method

5. The Embedded Software Design Simulator (ESDS)
5.1 Rationale for the ESDS
5.2 The ESDS System
5.3 ESDS Inputs
5.4 ESDS Outputs
5.4.1 Report Generation

5.4.1.1 Interactive Reports

5.4.1.2 Time Plot Reports

5.4.1.3 Multi-Run Comparisons
5.5 Design Strategy using the ESDS

6. Design for Factors 3 and 4: Multistate Task
Activation and Scheduling
6.1 Problem Statement
6.1.1 Hardware Environment
6.1.2 Software Environment
6.1.2.1 Task Types
6.1.2.2 Task Allocation to Processors (Nodes)
6.1.3 System States
6.2 Definitions

PAGE

N

e ek
NOO~JWUninw

14

16
18

22

25
25
26
27
28
30
30
32
32
32

34

34
34
34
34
34
35
35

Table of Contents (Cont'd)

6.3 Guarantee Test Thecrems
6.3.1 A Non-Optimal Guarantee Test Theorem
6.3.2 Chetto’s Optimal Guarantee Test Theorem
6.3.3 Multistate Case: An Extended Guarantee
Test Theorem
6.3.3.1 Additional Assumption: Activation and
Deactivation of Periodic Tasks.
6.3.3.2 Extended Guarantee Test Theorem

7. Design for Factors 3 and S: Multistate Task
Activation and Migration (Dynamic Re-allocation)
7.1 Task Migration (Dynamic Re-allocation)

7.2 Task Selection
7.3 Criteria of Sporadic Task Selection for Migration
7.4 Task Selection Theorem
7.5 Preliminary thoughts on pre-emptive strategies
7.5.1 Heuristics for Preventing System Failure
Caused By Unsafe Condition
7.5.2 The Request for Migration
7.5.3 Acceptance of Migration

8. Data Structures and Algorithms
8.1 Data Structures
8.2. Guarantee Test Algorithm
8.3. Task Selection Algorithm
References

Appendix A: Program Structure Notation

Appendix B: Use of the ESDS in Event Oriented Design

-ii-

37
37
37
39
39
40
43
43
43
43

45
45

46
46

47
47
48
49
51

Al

B1

EVENT ORIENTED DESIGN AND ADAPTIVE MULTIPROCESSING
Final Report
David Lefkovitz

Grant No. AFOSR-89-0157
Air Force Office of Scientific Research

i. Introduction

The work performed under this contract relates to the performance design of real-time
(RT) systems. All systems can be said to have both functional and performance
requirements. Functional requirements specify the content and format of inputs and
outputs and specify the algorithmic relationship of each output to the inputs that
produce it. That is, it is a mapping of inputs to outputs; hence, the analogy to a
mathematical function. Periormance requirements specify time and reliabiiity factors
such as response time, throughput, precision, and fail safe/recovery characteristics.

The most fundamental performance requirement of an RT system is response time, which
is defined as the time elapsed between the appearance of a particular system input and
the appearance of a specified output. The complete set of input/output pairs to which
such a requirement can be attached comes from the functional requirement, though it
need not be the case that every functional I/O pair have a corresponding performance
requirement.

A major difference between real time and other systems is that the former have critical
time constraints in the form of response time requirements. These are sometimes called
“mission critical” to emphasize the fact that failure to satisfy these requirements can
result in a failure that is as critical as an incorrect computation. However, the design
process of real time systems does not differ significantly from that of other system types.
We design for the functional requirements and then tune the system after initial
implementation for performance. This tuning may occur at various levels. At the
lowest, and least expensive, code can be tightened to run faster. At successively higher
and more expensive levels, tuning can take the form of algorithm change, program
architecture restructuring (eg recomposition of tasks), addition or change of processors,
if this is an option, and, as a last resort, relaxation of the performance specifications
themselves.

In RT systems response time can be as critical as algorithmic or functional correctness.
Up until recently most RT systems have used the cyclic executive method as a technique
for assuring response time. By this method tasks are assigned a particular time slot in a
round robin executive process. It's a very effective design approach for systems with
purely periodic tasks, but not for systems largely populated with asynchronous or
sporadically initiated tasks {[1]. Demands of high performance and highly interactive
systems have now swung heavily toward the asynchronous, and Ada multitasking along
with distributed processing system configurations are a direct response to this need.

-1-

The research performed under this contract had two major objectives. One was to
analyze the current state of research in RT design, particularly for mixed
asynchronous/synchronous systems, and to map it into a classification. The classification
might then serve two purposes. One, to determine whether there exists a unifying
concept in RT design; the other, to determine whether there are serious gaps in our
knowledge about these systems.

The second objective of the contract was to develop a design technique to handle a part
of the problem indicated as lacking by the classification.

Section 2 of this report presents the classification as a view of software development
based upon the way software is actually structured. It encompasses all software types
but then focuses more specifically on real-time software. It relates various methods of
analysis and design that have appeared in the literature to respective classes, thus
revealing how the facets of sofware development are covered by the various published
methods.

What results is that there does not appear to be a unified concept or theory of RT
development. Rather, there are distinct facets of the problem that are addressed by
different researchers. Some facets are covered more throroughly than others, and some
gaps exist. The research of this contract addresses two areas in which these gaps appear
to exist. One relates to a class of systems called communicating multitasking systems. A
design method, called Event Oriented Design and a corresponding tool, called the
Embedded Software Design Simulator (ESDS), was developed. The other gap related to
scheduling and allocation algorithms for a particular class called multistate task activation
systems.

Sections 3 and 4 present the event oriented design approach and the Embedded
Software Design Simulator. Section S presents the results of the multistate task
activation problem.

2. A Classification Approach to the Description of Software Development

Software Engineering has made significant progress in the past decade with respect to
methods and tools for the development of software systems. There exists a large body of
literature on the subject and many tool and documentation products that are based upon
these methods. Researchers in the field are faced with the questions of how their work
relates to that of others, where their work fits in the general scheme of software
development, how unique their work is, and whether and where there might be gaps
requiring new research effort. Another question that might be asked is whether there exists
a single, comprehensive development methodology or whether one could be created by
integration of existing methods that address different aspects of the problem.

In order to answer these questions, two steps were required. First was to create a
perspective or view of the entire spectrum of software development processes by which one
could classify the relevant literature. Second was to identify those approaches, techniques
and methods in the literature that exemplified these classes.

Because the orientation of this research is real-time systems, the classification is deepest in
this area. Others can elaborate by further subdivision of specific classes that may be of

2-

particular interest or by adding or modifying branches based upon different perspective or
even new technology and. What will also be shown is that there’is an imiierent structure
to all software systems that is revealed by the higher levels of the classification, and that
different software types are elucidated within the substructural elements or subclasses.

2.1 Approach to the Development of the Classification

Formally, a classification is a tree structure. Therefore, as with the development of a
system, one can adopt a top down or a bottom up approach. A combination of the two was
used in this case. First, it was decided that the major classes, or highest level breakdown,
would represent a comprehensive set of cognitive elements existing in every software system.
A decision had to be made as to whether the classification would primarily follow the life-
cycle stages (analysis, design, implementation, etc.) or the way systems are inherently
conceived and structured, independent of stage. The latter was chosen because
methodologies are structured thought processes. As such they are best distinguished (which
is the main purpose of the classification) by looking at the object of these thought processes,
which in this case is an inherent conceptual element of the software, such as data structure,
algorithm, program structure, data flow, external interface, etc. The life cycle stages are
merely steps in the over-all development process of transforming concept to software
implementation, and even though a given method may be designated for use in a particular
stage, it was felt that the more significant distinction or relation between methods is to be
found in how they deal with the above cited conceptual aspects of the system. This is not
to prevent one from assigning a life cycle stage attribute to a method to further distinguish
it. This led to the following top level breakdown.

. Hardware-Software Architecture
. External Interfaces

. Operational modes

. Data and Control Flow

. Program Structure

. Data Structures

. Functional Logic

NN B WN

The order of these major classes is also significant. They form an approxlmate hierarchy,
as shown in Figure 1, where the path from top to bottom represents a progression from the
external to internal environment and from operational to functional concepts as well as to
greater conceptual detail.

Viewing a system and its operational environment top down one can identify three principal
units: (1) hardware-software relations, (2) external interface to devices or people that are
served by the system, and (3) software. One could debate whether (1) or (2) is at a
conceptually higher level, but regardless, these would form the top of the hierarchy. The
first class, Hardware-Software Architecture, describes the architectural relationships between
the hardware and software, such as single vs. multiprocessor configurations and the
operating system. The second class, External Interfaces, will describe how devices or people
interface to the system. The latter can be quite complex, involving what is referred to as
the user interface.

1. Hardware-Software Architecture

|
2. External Interfaces

|

3. Operational Modes

4. Data and Control Flow

|
I l

5. Program Structure 6. Data Structure

7. Functional Logic

Fig. 1: Developmental Hierarchy of the Six Major Classes

The remaining classes characterize the software itself. The first is Operational Modes, which
subdivides all software systems according to the way in which they operate, such as
interactive, non interactive, real-time, etc. Having defined the system’s environment in
Classes 1 and 2, and having broadly classified software by operational type in Class 3, we
turn to the next conceptual level, which is the block structure of major software
components, usually called processes, and the flow of data and control throughout the
systean. Thus is Cluss 4, Daia anu Control I'iew. Bcelow this the picture divides, reflecting
the basic duality of computing systems: Data Structure and Program Structure. Jackson, in
his Data Structure Design method attempts to unify them [2], and Object Oriented Design
attempts to create its own kind of symbiosis through the abstract data type, but the
conceptual unification of these two characteristics still eludes us, because the two are
inherently different. Dara are essentially non active elements in the sense that, once
declared, they are always acted upon either for interrogation or modification, whereas
programs are the actors that perform upon the data; hence, both their roles and their
essential structure are quite distinct. An important question is whether methodolgy should
attempt to unify them. Having raised the question this paper does not offer an opinion on
future development, but continues to recognize both their separate as well as parallel
nature, as shown in the Figure.

In accordance with prevailing convention, program structure has been divided into two
classes. The higher level, Class 5, characterizes the modular structure of the program, while
the lower level, Class 7, characterizes the algorithms or functions employed within the
modules.

Since the emphasis here is on real-time systems design, the next steps were (1) to develop
the context for real-time systems within the classification and (2) to determine the most
essential distinguishing characteristics of real-time systems, which would create the necessary
depth i, this part of the classification tree. 1his constituted the bottom up part of the
process.

2.2 Definition of a Real-Time System

Participants at the Office of Naval Research Workshop on Real-Time Systems Research
Issues in November, 1986, sought to define real-time computing. Despite initial differences,
they seem to have agreed on the three major components [3]:

1. "Time" is the most important resource to manage in real-time systems. Tasks must
be assigned and scheduled in such a way that they can be completed before their
corresponding deadlines expire. Yet how to specify or determine deadlines is an
unsolved problem. A deadline is said to be "hard” if its violation may lead to a
catastrophe, as in an air traffic or flight control system. If satisfying a deadline
too early or too late would cause inconvenience rather than catastrophe, as in
transaction systems, the deadline is said to be "soft".

2. Reliability is crucial since failure of a real-time computer could cause loss of life,
failure of a mission, and/or great economic loss.

3. The environment within which the computer operates is an active component of
real-time systems. A real-time computer and its environment form a synergistic
pair. For this reason such systems are sometimes called "embedded.”

In summary, the fundamental characteristic uf real-time systems is that system correctness
depends as much on meeting time constraints as on producing a correct computation. By
implication then, each software component of a real-time system must specifically take into
account the response time required by applications using it [4].

This extended definition might be called operational as opposed to structural, where the
former defines the required behavior of a system, while the latter would directly address
the sysicm’s desicn features. This dichotomy is of particular interest here, because it is
within Class 3, Operational Modes, that real-time was placed in order to distinguish it from
other system types, but it is the latter that is more useful in the subclassification below that
point. What structural characteristics, then, affect "time constraints” and what methods of
auaiysis or design apply? Four such characteristics were identified: (1) centralized vs.
distributed architecture, (2) intertask synchronization, (3) queuing, and (4) response time.
The first of these was assigned to Class 1 and the others to Class 3.

2.3 The Classification

Table 1 presents the classification based upon the above criteria. The bold typeface
identifies representative approaches or methods, along with their literature references.

TABLE 1
Classification of Analysis and Design Methods

1. Hardware-Software Architecture
1.1 Processor Configuration
1.1.1 Single
1.1.2 Multiple
» Centralized
« Distributed
* Program Partitioning [5]
* Language Constructs [6]
* Real-Time Task Dispatching [7]
1.2 Operating System

2. External Interfaces
2.1 Devices (embedded)
* Approach of the NRL Software Cost Reduction Project [8]
2.2 People
* Person-Machine Interaction [9]

3. Operational modes
3.1 Interactive
3.1.1 Real-time
3.1.1.1 Program Structure - Concurrency
3.1.1.1.1 Single task
* Cyclic Task Executive [1}
3.1.1.1.2 Multitask
* Concurrent Programming [10]
* Communicating Sequential Processes [11,12]
* Ada (Rationale) [13]
3.1.1.1.2.1 Coupling
« Tight
» Loose
* DARTS [14,15)
* MASCOT [16]
* Ada (Rationale) [13]
3.1.1.2 Performance (Response Time)
1.2.4 Task Execution Time
.1.2.2 Task Communication (Same as 3.1.1.1.2.1)
.1.2.3 Task Activation Mode
3.1.1.2.3.1 Temporal
« Periodic (synchronous)
» Sporadic (asynchronous)
3.1.1.2.3.2 Control
+ Unistate
« Multistate
* Structured Development of RT Systems [17,18]
3.1.1.2.4 Task Scheduling
3.1.1.2.5 Task Allocation
3.1.1.2.2 Response Time
3.1.2 Rapid Response
3.2 Non Interactive

3.1
3.1
31

4. Data and Control Flow
* Dataflow Diagrams [19,17,18]
* Actigrams [20]
* Activity Charts [21]
* HIPO [22]

5. Program Structure

5.1 Module Construction
* Functional Decomposition (Structured Design) [23]
* Module Construction [23,24]
* Object Oriented Design [25,26]

5.2 Control and Packaging
* Buhr Diagram [27]
* Structure Chart (Call Tree) [23]
* Program Structure Notation [See Appendix A]

6. Data Structures
* E-R Diagrams [28]
* CODASYL Diagrams [29]
* Relational Databases [30]
* Basic File Structures [31]

7. Functional Logic
* Structured Flow Charts [32]
* Decision Tables [33]
* Warnier-Orr Diagrams [34]
* JSD Structure Charts [2]
* PDL, Structured English, Pseudocode [35]
* Algebraic Specifications [36]
* Non Procedural Languages [37,38]

The Table is incomplete in the sense that (1) the methods cited represent a fraction of the
total publications on the subject, and (2) the classification itself is subject to additional
interpretation and development. Its purpose here is to focus on the Real-Time systems
(subclass 3.1.1), but it is hoped that others would continue its development for their own
purpose. For example, there certainly exists a significant literature on subclass 2.2 External
Interfaces: People, though most of it describes rather informal approaches (usually
described by example) to the design of screens and person/machine interactions.

To the extent that one might find a unifying conceptual structure, it may be seen in the way
the seven major classes form an over-arching developmental hierarchy as shown in Figure
1; however, within the subclasses there is considsrable overlap and diversitv .f method,
which leads to the conclusion that a well defined, comprehensive approach to the analysis
and design of software systems does not yet exist. What we have instead are specifically
tailored techniques for particular elements and subelements of the classification, where
individual practitioners may either auapt a particular method to their own working
environment and project or may ignore all published work and develop an ad hoc approach.

2.4 Real-Time Systems

Class 3 divides all software systems into three types based upon their Operational Mode.
First, there are two main subclasses, Interactive (3.1) and Non Interactive (3.2). All
computing systems can be characterized operationally by the activity pattern: input-process-
output. The essential difference between interactive and non interactive systems lies in the
interpretation and in the repetitive nature of this pattern. In the former the pattern itself
is adhered to very strictly and repeats many times within the total run time of the program.

-7-

In addition, there is usually a reponse time requirement placed on the execution of each
instance of the pattern, ie, the time between the presentation of an input to the system and
the appearance of its corresponding output.

In the non interactive system the pattern can have variants and, depending on the variant,
may have a high or low repetition rate within the run. For example, the pattern may be
defined as: input,, input, ..., input_-process-outpu:. Each input, is called a transaction. The
output might be a report. This pattern would normally occur only once during the run.
Alternatively, one could define a patte.n: input;-process-output,, where output, represents
the update of a database, and this pattern repeats n times throughout the run. There may
also be a performance requirement, called throughput, that is basically the reciprocal of
response time. It is defined as the number, n, of transactions processed per unit time.

Class 3.1: Interactive

Within the Interactive subclass there are Real-Time (3.1.1) and Rapid Response (3.1.2).
Here the term mission critical becomes the commonly understood distinction. Being
Interactive they both have associated response times, but in the case of a real-time system,
failure to meet this requirement is regarded as a system failure (just as failure to compute
correctly), but in a rapid response system, some inconvenience may be caused to those
involved in the interaction, but the system is not regarded as having failed when response
time is exceeded, unless it is excessive. Real-Time systems are also referred to as
"embedded” inasmuch as the software is embedded within and interfaces primarily with
hardware devices that control some process. The rapid response system primarily interacts
with people.

Class 3.1.1: Real-Time

Within Real-time (3.1.1) there are two subclasses that provide the most significant
distinguishing characteristics of real-time software, Program Structure and Performance
(Timing).

Class 3.1.1.1: Program Structure - Concurrency

This subclass represents those aspects of software structure that enable it to support either
real or pseudo concurrency. This includes the simulated concurrency of single task systems
and the intertask communication methods of multitasking. The lowest level of this subclass
(3.1.1.1.2.1 Coupling) distinguishes between tight and loose coupling, which is a design
concept of fundamental importance, because queueing is most sensitive to this design
feature. Tightly coupled tasks, as in Ada, require that a client task be suspended until the
server has processed the call. Loosely coupled tasks permit the client task to proceed
immediately after the call has been placed but not necessarily processed.

Class 3.1.1.2: Performance (Timing)
Performance relates to such characteristics as response time, throughput and reliability.
The distinguishing characteristic of RT systems is response time. Determination of the

response time of a system requires that atomic units of activity be identified that are
contribute to the response time. One model for viewing these activities is the Petri Net

-8-

[39]. When translated to RT software this atomic unit of activity becomes the rask. A task
is a program unit that the operating system views as having a certain kind of independence
in the time domain. That is, it can run in "parallel” with other tasks. if the hardware has
mutliple processors then it can physically run in parallel; otherwise, the operating system
simulates parallelism by time-sharing the single processor. Even in a multiprocessor
configuration multiple task may still be assigned to a single processor, and hence scheduled.
Tasks can also be transferred from one processor to another to balance load and to enable
task to meet required deadlines. These deadlines are imposed by the need to satisfy a
system response time. There are five task oriented design factors that relate directly to
response time:

1. Task Execution Time: The execution time of tasks that form a pathway between
the input and output.

2. Task Communication: The mode of communication between tasks is sometimes
referred te as coupling. There are two basic modes of coupling, tight and loose.
Communicating tasks are designated as consumer (calling task) and server (called
task). Under tight coupling the consumer is suspended until its call has been
serviced. This means that the consumer cannot continue execution while its
call is bnth queued and being executed for service. Under loose coupling the
consumer task can continue to execute after the call and while it is queued and
being executed by the server.

3. Task Activation Mode: A task is said to activated when it is called upon to
perform service. At the time of activation it requires service of the CPU.
During the course of service it may voluntarily or involuntarily give up the CPU.
Such service lapses are called suspensions. These may occur if the task delays
itself or if it calls upon the service of another application or operating system
task such 1/0O.

The classification subdivides activation into two types: temporal and control.
Temporal activation refers to whether the task is activated periodically
(sometimes referred to as synchronous) or sporadically (sometimes referred to
as asynchronous).

Control activation refers to a certain aspect of how the activation of a task is
controlled. There are two types of control activation: unistate and multistate.
A unistate system is one in which all tasks are eligible for activation at all times
(during the course of system operation), and the periodic tasks run for all time
with their assigned periodicity. A multistate system is one in which two or more
states are identified, where each state consists of a subset of all tasks (periodic
and sporadic). State changes are triggered by an external event (ie, a system
input) or by an internal event (ie, the output of some currently activated task).
When the system changes from state A to B, all tasks in A are terminated, and
the tasks of B are then eligible for initiation. This includes both periodic and
sporadic tasks. Thus, periodic tasks do not cycle and run indefinitely, as in the
unistate case.

The standard method for describing intertask communication of a unistate system

-9.

is the Dataflow Diagram (DFD) or the Buhr diagram [19,27). The latter
provides some more specific detail relating Ada constructs. Extensions to the
DFD have been made by Ward/Mellor and by Hatley for describing multistate
systems [17,18].

4. Task Scheduling. Given that two are more tasks in a single processor (CPU) are
activated concurrently, a schedule must be created for assigning the processor
to the tasks in such a way that each task will meet its completion deadline.
These deadlines are imposed by the over-all response time required of an I/O
pair that contains the given task within a path from input to output.

5. Task Allocation. In a multiprocessor system tasks are allocated to processors
either statically, before execution begins, or dynamically during execution, or
both.

2.5 Non Real-Time Systems

From the perspective of this classification the software world is divided into three types as
revealed by the subclassification:

3.1 Interactive

3.1.1 Real-time

3.1.2 Rapid Response
3.2 Non Interactive

As described above, the distinction is based upon the repetitive nature of the activity
sequence Input-Process-Output and the criticality of the Input to Output response time.
Table 1 shows no methodology and literature citation within subclasses 3.1.2 and 3.2,
because these are not the focus of this research, though it is also possible that there is no
distinguishing methodolgy that is relevant to these system types within the Operational Mode
context. Other parts of the classification would carry the relevant methods. For example,
Class 2.2, External Interfaces - People, is of primary importance to Class 3.1.2, Rapid
Response. It is here that the interactive person/machine dialogue would be developed,
which is the important distinguishing characterization of Interactive -Rapid Response
systems, just as the Operational Mode breakdown shown in Table 1 is the important
distinguishing characterization of Interactive - Real-time systems.

2.6 Common Characterizations of all Software Systems

All software systems are based upon a set of functional requirements, which, broadly
speaking, are instructions for transforming inputs to outputs. Implicit also is an existing
state of the system, characterized by a set of internally and/or externally stored data
structures, that can condition the transformation and can also be modified by the inputs or
intermediates as part of the process. The software system can be viewed as a finite state
machine of enormous proportion. An input moves the system from one state to another
with the possible production of an output. Two mechanisms are thus required to effect this.

-10-

One is an algorithm that processes the input along with other state data to determine the
next state. The other is memory in the form of data structure that records the current state.
Figure 1 illustrates these dual characteristics as Classes 4 through 7.

This final part of the classification follows a fairly well-accepted paradigm. The higher level
(Class 4) is a decomposition of the total system into processes and a specification of the
lines of data flow among them. In some cases control flow, which establishes process
sequences, may also be specified. The process is a somewhat generic unit, having no formal
programmatic definition, but at some level of the decomposition it becomes a program or
task (in the case of multitasking) and then, at the lowest level of decomposition, a
subprogram (procedure, subroutine, etc.).

Program Structure (Class S) is the modular decomposition of a program or task, which in
current practice can assume two forms. One is the older and more conventional functional
decomposition approach in which the modules are subprograms (also called procedures or
subroutines). The decomposition can be represented as a tree that is referred to either as
a Call Tree or a Structure Diagram. The other, newer type of decomposition is the Object
Oriented approach, in which the modules are called objects or data abstractions. These are
encapsulations of data structure and procedures that operate only on these data structures.
The objects communicate with one another via messages (analogous to the subprogram
calls), but the program decomposition in this case would appear as a network, with certain
other graphical notations to designate creation of multiple objects from the same object
type or data abstraction.

There arises here a problem that has yet to be fully addressed in the literature. The result
of the Class 4 and 5 characterizations is a rather complex set of control and other structural
relationships among the various “modular” components. Control and Packaging (5.2), is the
designated subclass for these characterizations. Control refers to the transfer of program
control within a processor, while packaging refers to structural groups with a developmental
or design rationale but do not directly imply transfer of control. For example, a package
may contain a set of I/O procedures or a queue and its associated maintenance procedures.

These characterizations pertain primarily to the design stage of the life cycle. It would be
of interest to represent in a single, easy to read and maintain document the following design
elements that are directly related to program and packaging control within the context of
Class S:

Subprogram call structure
 Unconditional
+ Exclusive OR
« In a sequence
« In an iterative cycle

Task entry structure (In Ada terms)
« Calling subprogram
« Called entry
« Calling subprogram select structure
« Called task select structure

Task initiate, delay, terminate

-11-

 Exception block
« Package structure

At present two tools cover many but not all of these relationships: The Buhr Diagrams,
which apply to Classes 4 and S, and the Structure Diagrams or Call Tree (See Table 1).
However, separately, they do not provide the designer with a sufficient grasp of all this
information, which is necessary to comprehend the entire control and packaging picture of
the design. The answer may simg.y be to combine the two types of graphics hierarchically,
with the Call Tree nested within the Buhr diagram. An alternative, referred to in Table
1 as the Program Structure Notation, is a tabular format and is described in /ppendix A.
Its major advantage is that it can be manipulated with a word processor, contains all of the
control and packaing information in one format, and can be expanded into and retained as
documentation as one moves into a PDL (Class 7) and finally the code.

The Data Structures (Class 6) can be introduced at any level of the decomposition. They
can interface, at the highest level, to the external environment; they can interface processes,
programs, tasks or subprograms and can be internal to subprograms.

Finally, the subprogram of Class 5 must be algorithmically specified in a form that is here
called Functional Logic. The conventional and predominant approach is Procedural (7.1),
which expresses the program logic in the form of sequence statements (expression
computation and assignment, I/O, and subprogram calls), branching statements (ifthenelse,
case) and looping statements (dowhile, dountil). The various of methods for expressing this
logic are cited in Table 1.

The Non Procedural (7.2) logic is more recent and neither well understood nor widely used.
Two such methods are cited in the Table. One of these, MODEL, is fully implemented in
the sense that the MODEL Compiler translates the non procedural language (called by its
developers a specification) into source code in one of three language: PL/1, C and Ada.
MODEL has been demonstated on a wide range of applications, including database
transaction systems, economic modelling, scientific calculation and real-time systems.

2.7 Software Metrics

Another possible application of the classification may be in the development of metrics for
software cost estimation. For example, Albrecht in his Function Point method divides the
process into two parts. In the first he creates his unadjusted function point count based
upon the five processing activity characteristics of user inputs, outputs, internal files,
interfacing files and inquiries. In the second part he adjusts this count via fourteen factors
related to Technical Processing Complexity (TPC), such as data communications, distributed
processing. on-line data entry, on-line update, reusability, etc. [40]. Symons has written a
critique in which he states that the individual elements in Albrecht’s TPC list should be
more open ended, and he has added six more. He also views the processing activity as
three elements rather than five [41]. Kemerer has performed validity tests on four methods,
including Albrecht’s Function Point approach and concludes that all of the systems tested
would require extensive calibration within the actual environment that wanted to use it [42].
He also suprisingly found that the use of function points with and without the 14 TPC

-12-

factors did not make much difference. The Classification of Table 1 may help to identify
those characteristics of software that relate most specifically to cost for a particular project
in a given environment in either the processing activity or the TCP sense.

-13-

3. Performance Specification and Design of RT Systems

As presented in the Classification of Section 2.3 there are five factors that relate directly
to response time.

(1)

@)

G)

(4)

)

Task execution time: The execution time of tasks that form a pathway
between the input and output.

Intertask communication: The mode of communication between tasks.
This is usually referred to as coupling. There are two basic modes of
coupling, tight and loose. Communicating tasks are designated as
consumer (calling task) and server (called task). Under tight coupling the
consumer is suspended until its call has been serviced. This means that
the consumer cannot continue execution while its call is both queued and
being executed for service. Under loose coupling the consumer task can
continue to execute after the call and while it is queued and being
executed by the server. '

Task activation: There are two modes of task activation. First is whether
the task occurs periodically or sporadically. Second is whether the system
containing the tasks operates in a single or multiple state mode. A
unistate system is one in which all tasks are eligible for initiation at all
times (during the course of system operation), and the periodic tasks run
for all time with their assigned periodicity. A multistate system is one in
which two or more states are identified, where each state consists of a
subset of all tasks (periodic and sporadic). State changes are triggered by
an external event (ie, a system input) or by an internal event (ie, the
output of some running task. When the system changes from state A to B,
all tasks in A are terminated, and the tasks of B are then eligible for
initiation. This includes both periodic and sporadic tasks. Thus, periodic
tasks do not cycle and run indefinitely, as in the unistate case.

Task scheduling: If two or more tasks are assigned to run in a single
processor then the tasks must scheduled.

Task Allocation: The allocation of tasks to processors in a multiprocessor
environment. Normally, an initial allocation is made, but tasks can also be
reallocated dynamically during the run.

A question arises as to whether it is useful, or even possible, to specify any of these
factors as a requirement or whether they should be left entirely to the design, leaving
only the response time to be specified. To answer this question one naust look first at
the most common method of specifying the architectural structure of the system, which
is some form of dataflow diagram (DFD). By means of this diagram the required
system is hierarchically decomposed into processes. Left open is the terminating level of
this decomposition. Some specifiers will go deeper than others. The designer will
consider each process of the DFD and determine which of five software design elements
it is: System, subsystem, program, task and subprogram. The specification typically
terminates the decomposition of the DFD with what the designer would classify as a

-14-

subsystem, program or task. The designer will further decompose these to the ultimate
level of subprogram. Most real-time systems are characterized by multitasking. This
means that at some icvel of the DFD decomposition, every process is mapped into at
least one task, including the main program. A task is defined as that unit of processing
activity that can run independently of and, if desired, in parallel with other tasks. In
some cases the tasks communicate and in others they do not.

All five of the response time related factors cited above are associated with the task.
Two questions then arise: (1) Should the tasks be defined in the requirements
specification or the design, and (2) if in the specification, which of the five task related
response time factors, cited above, would be allocated to specification and which to
design.

In response to question 1, parallel operation may certainly be included in the
requirement, and hence specification would include tasks in the DFD. However, the
five factors represent quite different levels of technical specification. Factor 1, task
execution time, may be determined in specification, but normally it is either done in
design or not even then.

Factor 2, task communication, is partly determined in specification, in terms of which
tasks communicate with which others and what data are communicated. The question of
loose vs. tight coupling may be left to design.

Factor 3, task activation, is normally determined in specification. This includes both
unistate vs. multistate and periodic vs. sporadic activation. In particular, unistate
activation can be handled by the DFD, while multistate activation is handled by the
Ward and Mellor [17] and the Hatley [18] DFD extensions.

Factors 4 and S, task scheduling and allocation, are always deternined in design.
However, all of the design techniques and algorithms for scheduling and allocation
(factors 4 and 5) relate to unistate activation. [43-57]. The most notable of this work is
the Earliest Deadline (ED) strategy of Mok [52] and the guarantee test algorithms of
Chetto under the ED assumption [46].

The research on this project has been directed at Factors 2 through 5 in the design
phase. It has been divided into two major tasks. The first treated primarily factor 2 and
secondarily factors 4 and 5. It led to the developemnt of a design technique called
Event Oriented Design, in which the RT system design with communicating tasks and
I/0 response time specifications formally introduces the timing requirement, and the
design process attempts to produce a communicating task architecture that optimally
satisfies that requirement. Event Oriented Design and its associated software tool, the
Embedded Software Design Simulator (ESDS) are presented in Sections 4 and S.

The second major task treated factors 3 through S as applied to the multistate case. As
mentioned above, these factors have been covered for the unistate case 1n aesign, and
specification techniques for the multistate case are well developed, but there is no
design counterpart for the unistate techniques. Sections 6 and 7 will present an
approach to the design of RT systems based on factors 3 to 5 for the case of multistate
systems.

-15§-

4. Design for Factor 2: Intertask Communication

In Chapter 5 of Software Engineering with Ada [58], Booch presents a diagram in which
he depicts a problem space and a solution space. The former is the real world, with
objects and operations, where objects may be velocity and frictional forces on an
aircraft, and operations may be the functional relationship between the frictional force
and the velocity. The solution space also contains objects and operations that map onto
those of the real world, but which must be represented in a programming language.
From this picture, Booch defines a programming methodolgy that he calls object
oriented design. He contrasts this with other well known design methods such as
top-down and data structure design. In brief, he says that top-aown design concentrates
on the operations and data structure design on the data objects, while object oriented
design provides a more balanced treatment of the two. Booch also refers to a lack in
both top-down and data structure design inasmuch as they do not take time and
parallelism sufficiently into account. However, an examination of his object oriented
design method also does not reveal an explicit accounting for these factors.

Current design methods and tools for the development of embedded systems in Ada
follow one or a combination of the methodologies Booch refers to, such as Object
Oriented, Structured, Top-Down and Data Structure design [26, 23, 59, 2]. However,
these methods manipulate only two of three important factors in the design of an
embedded software system, namely objects and operations on the objects. The third
factor, that is not explicitly accounted for in these methods, is time. The reason for this
omission may be historical. Conventional transaction oriented and scientific
computational applications do not require that time (ie real time in the problem
environment) become an explicit design factor, except in a very gross way that relates to
economy or efficiency of performance. Even in the case of an interactive information
system, where a desirable response time may be specified, failure to meet this
specification does not usually mean system failure, only some elevated level of
inconvenience to the users. In embedded systems, however, response time can be as
critical as algorithmic or functional correctness, but even here other methods have
sufficed up till now. Most systems in the past have used the cyclic executive method in
which tasks are assigned a particular time slot in a round robin executive process. This
method is relatively efficient for synchronous tasks but not for asynchronous or sporadic,
multiple tasks [1]. Demands of embedded systems have now swung heavily toward the
asynchronous, and Ada multitasking along with distributed processing system
configurations are a direct response to this need.

Event oriented design formally introduces time into the design process, along with
objects and operations, by means of a tool called the Embedded Software Design
Simulator (ESDS). The ESDS is a software tool within a methodology called Event
Oriented Design, which does not replace but rather augments one of the other,
abovementioned object/operation design methods [61]. With ESDS many

different designs can be quickly evaluated with respect to system response time and the
location of queueing bottlenecks; in the process, timing specifications can be established
for the subsequent writing of the procedural code.

Event oriented design views a system as having the hierarchic architecture shown in
Figure 2.

-16-

System

Tasks and External Interfaces

[|
Events ------------------meee - - Subprograms

Logic/Data Structure

Code

Hierarchic View of System Architecture
By Event Oriented Design
Fig. 2

The system level decomposes into tasks and the input/output interfaces to external
devices or other systems. Communication of data and control among the tasks is also
included. The task level has two decompositions. On the one side each task is
decomposed into events and their time relation. On the other side each task is
decomposed into Ada subprograms. Probably the reason that the event was formerly
overlooked as an important element in the system architecture is that it is not in line
with the traditional hierarchy of decomposition; however, as will be discussed, it plays an
important role. Also, as shown by the dashed line in the figure, it is formally
incorporated into the mainline decomposition via the subprogram decomposition. The
subprogram is a procedure or function. Its design consists of two parts, program logic
and data structure. The program logic will become the procedural code at the next
level. The data structure design specifies the individual data types and variables and the
composites constructed from them in the form of arrays, records and lists.

Event Oriented Design assumes that the analysis stage of the development lifecycle has
produced at least the following four types of documentation:

(1) Data Flow Diagram (DFD)

(2) Specification of algorithms required to transform DFD process inputs to
outputs.
3) Identification of all important response times of Input/Output data

(signal) pairs associated with DFD processes.

4) Specification of input loading, as signal arrival patterns. These may have a

-17-

fixed periodicity, a random occurence with some stated parametric or non
parametric distribution, or may be a function of some other event, like
another input or output.

Documents (1) and (2) tend to be quite complete and accurate. Document (3) is less
so, because the specifier include only critical or very important responses or may not
know in advance the ultimate consequence of a given response within the system and
hence may provide an estimate, to be adjusted at a later time. In other cases, a
response time is arbitrarily selected and may turn out to be unnecessarily restrictive.
Document (4) is even more problematic. In some cases there are standard sampling
rates for sensors. In others, particularly the random inputs, one can only guess at what
they might be.

Conventional design methods are addressed primarily to documents (1) and (2).
Distributed processing is very much concerned with all four documents but there is as
yet no systematic method for distributed design. Though event oriented design is not at
present capable of serving as a general design methodology for distributed systems, it
can help, because it focuses on the time constraint problem.

4.1 Event Oriented Design and the Embedded Software Design Simulator (ESDS)

Figure 3 presents a flow diagram of the methodology that supports this view. Rectangles
represent diagrammatic or structured textual tools that can be implemented with
graphics and word processing software. The processes associated with these boxes are
intellectual and manual. Though systems are being developed that will automatically
generate source code from a higher level design language that might be compared with a
PDL [60,63], it is assumed here that Ada code is to be generated manually, based upon
the PDL. Ellipses in the figure represent custom software for simulation, compilation
and debugging. The name of the tool appears in capitals, and reference to the system
architectural view of Figure 2 appears in parentheses below it.

Figure 3 presents a sequence of four steps or pathways, as indicated by the bracketed
numbers. These constitute the methodology. In path [1] the system is designed at the
task and event levels via BLOCK and EVENT Diagrams. This creates the ESDS or
system architectural model, which involves decomposition of the system into tasks and
within these, the task entries, external 1/O interfaces to the entries, intertask
comniunication via the entries, internal (non entry) processes within the task, and
required response times from specified inputs to outputs. As will be described in more
detail below, the Event Diagram also requires that the execution times of certain event
types be specified. Thus, the combination of (1) specification of events, (2) event
sequencing, (3) event execution times and (4) required input/output response times
consitutes the formal introduction of time into the design process, as presented in the
Introduction. All of these factors appear in the model produced in path [1] of Figure 3.
In terms of the system architectural view of Figure 2, we are talking about the left hand
branch, running from "System” to “Events”. The right hand branch of Figure 2 appears
in paths [2] to [4] of Figure 3. The Introduction stated that the Event Oriented design
adds time to the other two design factors, objects and operations. Path [1] treats only
time. Objects and operations are introduced in paths [2] and [3], and all three are
combined in path [3].

-18-

BLOCK DIAGRAM

EVENT DIAGRAM BLOCK
CALL TREE DIAGRAM
POL (Task)
CODE
(1]
EVENT @ CALL TREE]
DIAGRAM
P (SubProg)
f1] l (2]
13] l l (3)

(4]

Event Oriented Design with the ESDS
Fig. 3

Path [1] splits after the Event Diagram. One branch (to the left in the diagram)
establishes the modc! as a database from which the ESDS simulation program can be
run. The other automatically creates the skeleton of a PDL (Program Design
Language), also as a database. The ESDS simulation provides the designer with
expected response times and other quantitative performance information based on the
architectural model, such as queue sizes and locations and task duty cycles. These
enable the designer to adjust the model per the Block and Event diagrams until
satisfactory performance in the simulator is achieved. The path [1] cycle may thus
repeat a number of times.

When the architectural model is satisfactory, the design proceeds on path [2]. Tasks are
decomposed into subprograms and their calling hierarchy, which are represented by the
Call Tree and which is automatically added to the PDL database. The data interfaces
between subprograms would also be specified at this time. This involves both the

-19-

specification of data structure and mode of allocation/transfer. The latter could be via
parameter transfer or as global allocations.

The architecture of the system at this time can be characterized as follows: (1) The
system has been decomposed into tasks. (2) All task intercommunication has been
defined. This consists of the "call” from one task to another and the timing condition, if
any, on the call. That is, the call entries are defined as is the select statement structure
on either the calling or called side. It does not consist, at this point, of the data
communication (See item 5). (3) The timing relationships between all inputs into and
outputs from the system have been defined. (4) Each task has been decomposed into
subprograms, and the calling relationshps among the subprograms have been defined.
(5) The data that are passed between subprograms have been defined. This should also
include the data passed with task calls.

State of the art editors and input graphics systems are capable of capturing the
information contained in the architectural model defined by the above five items, and
these can then be formally represented as a combination of textual and graphical
information in the PDL, as implied by the path [2] entry into into the PDL in Figure 3.

As stated, event oriented design recognizes three basic design elements: time, data
objects and operations on the objects. The design at this time contains the first of the
three elements and a start on the second, namely the data objects that are
communicated between tasks and subprogrograms. It has also defined "operations” in a
broadly conceptual way as "tasks” and "major functions” (ie, the subprograms). What
remains is to complcte the definition of all data objects internal to the subprograms and
the operations on them (as well as on the communicated objects) via the detailed
program logic. These remaining design functions represent the conclusion of path [2].
They are purely intellectual and manual processes and are added to the PDL by means
of a standard word processing text editor, though there are systems that establish
conventions that result in valuable documentation reports {35]. Any of the accepted
methods of design may apply here -- object oriented, structured or data structure design.
Thus, event oriented design is not a replacement for these other design methods but an
augmentation.

When the PDL is complete, the Ada code can be written in path [3]. This, again, is a
manual process, until such time as it can be effectively automated, though, as mentioned,
there will still be a higher level language in which the program must be written. The
ESDS will accept a partial path [3] input on a subprogram basis. When the ESDS runs
it will simulate the entire system based on the path [1] model but will actually execute
any compiled and linked subprograms. The simulation run time used for these
subprograms is still that in the original model. The execution of these subprogram stubs
within the ESDS has two purposes. One is to obtain actual timing, which is logged into
the model database for comparison with the original estimate or specification, and which
can later be substituted, if the user desires. The second purpose is to begin to obtain
actual data values and to track data flow along with timing. This, of course, requires
that appropriate data values be available to the subprogram when it is called. The user
must therefore develop a strategy via path [3] cycling that fills in the subprogram stubs
and provides data input in a sequence that tests more critical paths first and less critical
ones later. The pure time-related cycling of path [1] aids in identifying these critical
paths. A standard debugger can also be linked to the run to find the ordinary

-20-

I computational bugs in the newly linked subprograms.

The use of the ESDS in this way can be regarded as a new kind of debugging tool,
which simultaneously provides the system developers (designers and programmers) with
both data value and system timing information, in either an interactive or complete run
mode. As each new set of stubs is added the entire simulation can be run with ESDS
reports fed back to the user. As shown in Figure 3, this feedback may necessitate
changes at any of five levels of the system development. Normally they are hierarchic,
in that CODE corrections are made first, then PDL, then CALL TREE, etc. in order to
limit the impact of these changes on the total design. For example, if a certain response
time cannot be achieved, and through the simulator the problem is traced to the
execution time of a particular subprogram, then the most desirable correction would be
to increase the speed of the subprogram through recoding. If this cannot be achieved,
then one could look to a higher design level change.

When all of the path [1] subprogram stubs have been coded via path [3], and the
development team is satisfied, based upon ESDS reports, that the requirements have
been satisfied, an operational Ada Program can be produced as step [4] that should be
subjected to system tests, as would normally be the case in a standard life cycle
sequence.

In terms of the design-implementation life cycle for a sizable system, one might find that
time spent in path [1] would be measured in weeks to months, and time spent in paths
(2] through [4] would be in months to a year or more.

The main purpose of path {1] is to provide the designer with a sense of assurance that
required response times can be achieved by the architecture thus far designed at the
task and event levels, through the specification of required execution times for various
subprograms or subprogram legs to be implemented at the lowest level.

The purpose of path [3] is to combine the timing and performance information of path
[1] with data flow and values and the recording of actual execution times of the
executable subprograms. What the designer and programmer can see during path [3]
iterations, that cannot be seen by normal debugging procedures, is the superimposition
of the time or event related information onto data flow information. The event related
information is characterized by queues, queuing statistics, derived efficiency numbers
applied to tasks and I/O program paths, and task priorities. The data flow information
is characterized by the identification of key data elements and their values as they move,
in time, through the system. Their movement can be tracked in terms of points of input
(tasks/entries), subprogram calls, intertask calls (and attendent queues), and outputs.

The main contribution to reliability, as well as cost control, is that the original
performance and algorithmic specifications are continuously monitored throughout the
design and implementation stages, rather than being determined after implementation in
system test. This is not to say that the system test is no longer required. The simulator
can only approximate the environment of the system, and execution times for the path
[1] stubs are also approximate. Hence, the results of the ESDS runs and analysis must
be regarded as indicative, not precise, and although one may have a greater expectation
that the final system (after all path [3] iterations are complete) will meet original
specifications, there must still follow a vigorous system test. Another advantage is that

21-

new response specifications can be tested by simply replacing actual (path [3]) code with
more tightly specified path [1] stubs and re-running the ESDS simulator. If the new
specs are met, then the stubs can be recoded to meet the tighter specifications. If this is
not possible, then other design modification options can be used.

Finally, there is a pathway shown at the bottom of Figure 3 that presents some
interesting though speculative possibilities for future investigation. It is called "Reverse
Modeling". In the figure it is represented by the dashed line path from the ADA
PROGRAM block back to the BLOCK and EVENT Diagrams. Its purpose is to
reconstruct, automatically, the Event Oriented model from the Ada source code. This
would have two applications. For existing programs, that had not been developed under
this method, the ESDS simulator could be used to analyze performance under many
different I/O conditions. This would facilitate system testing by finding the potential
bottlenecks via the ESDS first, which then enable system tests to be performed in a
more directed and efficient way. The second application is for systems that have been
designed under this method. In this case, a forward model will exist via path [1]. It
would be possible, after all path [3] programming is complete, to compare the forward
and reverse models, quantitatively (i.e., with respect to response times, queues, task
efficiencies, etc.), to determine whether the coding has correctly implemented the
original specifications, insofar as they are reflected in the forward model.

4.2 Steps in the Event Oriented Design Method

Step 1: Using the DFD and Algorithms specification documents, decompose the
system or subsystem into tasks, where each task consists of processes that
can be performed in parallel with those of another task.

Step 2: Design the task interfaces.
(1) Specify task entries and intertask call relations.

(2) Design the data structures that communicate data objects between
tasks. Decide whether these data objects are to be communicated
by parameter passage or by a commonly accessed package.

(3) Design the select structure on the called side. This includes (a)
alternative entries, (b) when guards on entries, (c) else alternative
processing, (d) delay alternative processing, (e) terminate alternative.

(4) Design the select structure on the calling side. This includes (a)
unconditional call, (b) conditional call (untimed), (c) timed
conditional call.

Step 3: Represent Steps 1 and 2 as an Event Diagram.

For every I/O pair in the Response Times specification document, there
will exist a path in the Event Diagram. All type 1, 2 and 3 events must
have an execution time assigned. Reference 2 contains a technical
description of the ESDS and event types. Initial execution time
assignments are made for these three event types such that the total I/O

22-

Step 4:

Step 5:

Step 6:

Step 7:

response time for any pair is less than or equal to the required time
specified in the Response Times document. These assignments are made
with some understanding of the complexity of the processing involved in
each event, but can only be approximate at first. In general, the more
slack between the minimum and required times, the more loading (ie
higher frequency of arrival for inputs) that is possible. Any response time
that exceeds the required time is called an I/O failure by the ESDS.

Run the ESDS with the inputs specified by the Loading (Input Arrivals)
specification document. If the response times cannot be satisfied, then
consider the following design and/or specification changes:

(1) Modify task priorities in Step 3.
(2) Modify event execution times in Step 3.
(3) Recompose tasks in Step 1 and then repeat Steps 2 and 3.

(4) Increase the number of processors and/or re-allocate tasks to
Processors.

(5) Increase selected I/O response time specifications.

(6) Decrease selected loading specifications. Options (1) to (3) lie with
the software designer; option (4) requires hardware configuration
design modification, while options (5) and (6) require concurrence
of the specifier. There may also be hardware/software tradeoffs
involved in option (2).

Step 4 is an iterative process that either converges on a solution or
concludes that a single system cannot meet the requirements.

Design the internal program architecture of each task using any of the
conventional design methods. This involves the specification of each
subprogram, the calling structure (usually represented as a tree) among the
subprograms, and the packaging overlays for tasks, subprograms and data.
If there arises a conflict between the program structure imposed by the
Event Diagram of Step 3 and the conventional design method (which is
only looking at the functional specification (documents (1) and (2)), then
one must either adjust the design to suit the Event Diagram or repeat Step
4 if the Event Diagram is to be altered.

Design the procedural logic and all data structures not designed in Step 2
for each subprogram of Step S.

Code and unit test system, using the event execution time specifications of
Step 3 as a guide. If possible, obtain actual event execution times and to
the extent possible, bring the actual code and the event timing
specification into agreement.

23-

Step 8: Perform integrated test. Use actual event execution times in model of
Step 4. Re-run the ESDS and compare results with those from integrated
test. If the actual system does not satisfy specification documents (3) and
(4), then find the bottlenecks with the ESDS. Resolve the problem by one
or a combination of the following options:

(1) Tighten the code of Step 7.

(2) Redesign via any of Steps 6 back through 1, starting with 6.

(3) Respecify via any of documents (4) back through (1), starting with
(4). Note that it may be possible to respecify an algorithm in
document (2) that will result in faster event execution times. The
ESDS will pinpoint the exact events that are causing bottlenecks.

An example of the application of Event Oriented Design is presented in Appendix B.

24-

S. The Embedded Software Design Simulator (ESDS)
5.1 Rationale for the ESDS

There are basically two ways to construct a system simulator. One is by a queueing
theory analysis of the total system that then represents the system as a set of equations
[63). This is sometimes called the analytic method. The other way is to characterize the
system as a set of events occuring in sequence or parallel, with specified durations and
time occurence relations, one to another. This is usually called discrete event simulation
[64]. The ESDS is the latter. The advantage of the former is that it usually runs faster.
Its disadvantage is that it is a statistical view of the total system and is subject to
whatever approximating factors are built into the particular formulas that are used.
Hence, it tends to be less accurate in its result, and it's more difficult, if not impossible,
to pinpoint problems, like bottlenecks, within the system, because it does not explicity
identify discrete system components. The discrete event simulation, on the other hand is
almost the converse. It generally runs slower but has the ability to control accuracy
through the level of discrete detail that it chooses to use. It essentially creates an
analog of the system by representing each component (task, task entry, subprogram, file,
etc.) as a discrete element. Hence it can identify problem spots in the direct terms of
this analog. Also, as will subsequently be explained, the user can interact directly with
the simulation, because there is a simulation clock that "ticks” off the events as they
occur. This cannot be done with analytic simulation, because all of the equations must
be solved before anything is known about the system'’s performance.

The choice of discrete event simulation and its assumption of accuracy in the ESDS is
essentially intuitive, being based upon the above considerations. The proof will reside in
running tests and comparisons with real systems, which is ultimately a part of the plan.
However, one always has the advantage that if sufficient accuracy is not achieved for a
given model, then refinement of one or more of the discrete components of the
simulation should improve the results.

Another accuracy problem faced by the user of the ESDS is how to assign the proper
execution time to the various events. For example, assume that a particular event is a
task entry that implements a signal processing algorithm. How is the designer to know
the execution time of this algorithm? The answer is that he must make an estimate,
based either upon experience with such an algorithm running on the intended target, or
that he would establish a given time as a specification for the programmer to meet,
where this value might be arrived at through an iterative process of actually running the
model and tuning it for best overall performance. It should also be noted that the
computer on which the ESDS runs need not be the actual target computer, because real
problem time is in no way related to the clock speed of the ESDS computer or to the
time that it takes the simulator to run. Real problem time is simply represented by a
program variable in the ESDS. If the programmer cannot subsequently meet this
specification, then the ESDS can be run again with the actual and then known time. If
response time and performance for all other functions of the system are still intact, then
the new time can be accepted. If not, then either design or specification must be
changed, or the programmer might be asked to try harder.

The point here is that under existing design methodologies, system response times are

-25-

not determined until after all programming is complete and system tests are performed,
when the cost of change is the highest. The ESDS reduces the chance of such
problems occuring after coding is complete, or, at the very least, provides the
programmers with execution time targets for their code to meet. Furthermore, it can
quickly test the impact of an execution time variance in one part of the system on the
operation and response times throughout the rest of the system. This requires time
consuming, and usually incomplete combinatorial testing in a system test.

This is not to say that one can do away with thorough system testing. The ESDS is still
only an approximate analog of the actual system. However, the hypothesis presented in
this proposal is that use of the ESDS will reduce the number of response time problems
found in the system test, and can even direct the system test to highly stressed areas of
the system, which might be places where problems are more likely to develop.

As for reliability and cost control, these are based upon (1) the ability to obtain
approximate response time information prior to coding, (2) developing the optimal
system architecture with respect to intertask communication, functional task composition
and subprogram structure based on this information and, again, prior to coding, and (3)
implementing and testing the Ada procedural code incrementally so as to assure
continued compliance with the performance and functional specifications as the work
progresses rather than at the end. Maintenance is also enhanced, because the ESDS
simulator can be applied to check system response times whenever new or modified
modules are introduced.

5.2 The ESDS System

The ESDS is a system consisting of three separate programs that interface via files, as
illustrated in Figure 4.

BUILD_MODEL builds the model by generating two files. The EVENT file contains
the events and their sequence relationships. The INPUT_ASSIGNMENT file contains a
description of each input to the program in terms of the event (or events) that it triggers
and the output(s) that result. BUILD MODEL also produces a report that documents
the model.

GEN _INPUT creates an INPUT file containing a series of inputs and the time at which
each is to occur during the run of the simulation. Inputs can be generated in two
modes: manual and automatic. The manual mode represents a single input that the user
enters with its time of occurence. The automatic mode enables the user to specify
parameters to a generator (procedure) that will automatically create inputs according to
a selected generator algorithm. Two algorithms currently exist; others can be added to
satisfy special requirements. One is to create an input of a particular type periodically,
where the type and period are entered as parameters. The second is to generate n
inputs randomly, where a type, period, and n are given and where the n inputs are
generated at random times within each interval.

Finally, the ESDS program runs the simulation. It uses three files internally: the Task

Status Table tracks the status of each task; the Queue File maintains all of the necessary
task queues, and the Statistics File maintains the simulation run time statistics for the

-26-

reports. The ESDS produces the various reports presented in Section 5.4.

Model Specificat Build Model Model Report
input
Assignment
Run Spedficaton Tesk Status
l Table (TST)

m.l. Es“ -

The ESDS System
Fig. 4

5.3 ESDS Inputs

The input to the ESDS has been referred to as the architectural model of the system, in
Section 2 above. In summary it contains:

(1) A decomposition of the system into tasks.
(2) All task entries.

(3) An enumeration and explicit sequencing of all events via the Event
Diagram.

(4) The required or desired execution times of each event in the Event
Diagram.

(5) Identification of each input signal to the simulated system, its type, the
system outputs that it triggers, and the desired response time of each
input-output pair. The types of input, as described above are manual and
automatic.

As described in Section 3, an Event Diagram is produced for each task. Events relate
directly to certain Ada commands, such as select, accept, delay, new, terminate and calls
to subprograms or task entries. They can also relate to blocks of Ada code. There are
nine event types associated with the method; they enable the designer to express p:-allel

27-

operation and intertask synchronization and communication in terms that are congruent
with Ada program structure. In this way the design principles inherent to the Ada
language are introduced early in the design process. This has several benefits, while in
no way restricting the flexibility or freedom of action of the designer. First, it improves
communication between designer and programmer and enhances total system
documentation by providing a smoother transition from Block Diagram through to code.
Second, it creates an "Ada” design, as opposed to an independent design that is then
recast into an Ada structure. One could argue against this approach if the
implementation language were to be decided after the design, but such is not the case
here. Third, the concept of concurrency and its effect on timimg and system
performance is introduced explicitly into the design process. And fourth, because it
bears a direct relation to the form in which systems are modeled by simulators, the
Event Diagram can be used as a direct input to the Embedded Software Design
Simulator (ESDS).

The nine event types are:

. Task initiation

. Task entry

. Sequential processing

. Call or interrupt to a task entry
. End of entry

. End of task

. Rendezvous

. Delay (non select)

. Delay (select)

OO WN =

The above information specifies the model. Each run of the simulator, then expects
an input file containing all of the manual inputs of the run, along with their arrival
times. The automatic inputs are automatically generated as the run proceeds.

5.4 ESDS Outputs

The ESDS provides the designer with a high degree of precision in the operational
analysis of the simulated program. First, he/she can determine which input-output pairs
do not respond as required. Second, he/she can determine which task, task entry or
event is causing the bottleneck. The reasons may be low task priority or excessive
execution time of critical events. A variety of solutions may then be considered. One is
to change relative task priorities. Another is to restructure tasks by separating non-
critical (i.e. low priority) from critical (high priority) subprograms. Another is to reduce
execution time of critical events. Another is to consider whether an unconditional task
call can be changed to a conditional call. This would have the effect of not performing
a certain task at a given time if the wait time were too long, which in turn has the effect
of reducing queuing on that task. Alternatively, there may be hardware remedies to
consider, such as additional processors in a multi or distributed processor configuration
or a faster processor.

The ESDS also provides efficiency measures for each task or event. These are numbers
between 0 and 1, where 1 is maximum efficiency and 0 would mean "locked out”. These

28

numbers can be used as a general measure of design efficiency so that even if all
response times were acceptable, one might still want to further optimize the system's
performance by improving the efficiencies of selected tasks or events. The purpose of
this would be to provide a greater safety margin in the event that future requirements
change.

The ESDS provides these capabilities through a hierarchic set of reports that enable the
designer to focus attention at the system, task and event levels. The report may be
printed after the run or viewed interactively on the screen. The types of information
contained in these reports are given in Table 2, followed by a description of how these
reports are constructed so as to give the user a “zoom” lens effect down through the
three levels of the hierarchy.

TABLE 2
Information in the ESDS Reports
DATA ITEM MEANING
Task Efficiency Tr = time during which the task can run but is not executing

because processor is unavailable.
Te = time during which task is executing.
Task Efficiency = Te/(Tr + Te)

Task Duty Cycle Td = time during which task is suspended in a delay.
Tz = time during which task is suspended at a rendezvous.
Tc = time during which task is suspended in a call to another
task.
Task Duty Cycle = (Te + Tr)/(Te+Tr+Td+Tz+Tc)

Tr, Te, Td, Tz, Tc

1/0 Response Time 1/O Response time is the time between a given input and one
Avg I/O Response Time of its required outputs. The average is over all occurences.

1/0O Efficiency A = Aciuai response time

Response Elast.city M = Minimum response time

(Individual and Avg) R = Required response time
I/O Efficiency = M/A
Response Elasticity = (R - A)/R

A, MR

1/0 Failures Number of times that A > R

Task priortty Current task priority. The original priority can change
temporarily if the calling task or interrupt has a higher
priority.

Event Efficiency Same as Task Efficiency, where Tr and Te are the times that

the event is in the run and execute states, respectively.

TABLE 2 (Cont'd)

Queue location Task/entry of the queue.
Queue size Size of a queue at an entry.
Queue size/task Total of queue sizes for all entries in task.

Time weighted queue Time weighted average queue size.
size

Time weighted queue Time weighted average queue size per task
size/task (over all entries in task).

Actual event time The time from beginning to end of an event.
Minimum event time Time of event if it were always in an execute state.

Variable value The value of a given variable at a given time.

5.4.1 Report Generation
There are three types of reports:

1. Interactive reports during the course of a run.
2. Time plotted reports at the end of a run.
3. Multi-run comparisons.

5.4.1.1 Interactive Reports

The ESDS generates a series of interactive reports, each having greater detail. The
values in the reports are updated every time the simulation clock changes. This clock
will change with the completion of any event, and it advances by the time duration of
the event. At such a time, the user can call for the display of any of the reports. At the
end of the run, the user can obtain a hard copy "transcript” of any report, where all time
change displays are printed.

The user also has two modes of control over the report displays as the simulation is
running. One is called "stop frame”, in which the simulation stops when the clock
changes, and the selected report is displayed with current values. The other is called
"continuous run”, in which the simulation continues to run, at a wall clock speed set by
the user. The report remains on the screen, and its values are changed with each clock
change. In this mode the user can watch the values change on the screen and can
interrupt the simulation at any time to change its wall clock speed, the display or the
mode.

Table 3 presents the information content of reports at each of the three current system
architectural levels plus the intended future procedural code level.

TABLE 3
ESDS Reports
LEVEL REPORT CONTENT
System 1. Current time

2. Average task efficiency
3. Average task duty cycle
4, Per 1/O pair:
4.1 1/0 pair (identification of input and output)
4.2 Min response time
4.3 Avg actual response time
4.4 Required response time
4.5 No. of /0O failures
4.6 Avg 1/0 efficiency
4.7 Avg response elasticity
5. [Optional] Per selected 1/0 pairs:
5.1 1/0O pair (identification of input and output)
5.2 Trace of intertask control path from input to output
with current position of control, and Queue size/task

Task 1. Current time
2. Task number and name
3. Priority
4. Efficiency
5. Duty Cycle
6. Tr, Te, Tz, Td, Tc
7. Queue size/task
8. Time wtd. queue size/task

Event

Event Report 1. Current time

. Task number and name

. Event number (On Event Diagram)
. Event type

. Minimum event time

. Avg actual event time

. Efficiency

. Queue size

. Time wtd. queue size

CQO~NOOMMDWN

Queue Report 1. Current time
2. Queue location
3. Queue size
4. Time wtd. queue size

-31-

Procedural Code 1. Current time

2. Task No. and name

3. Event No.

4. Variable value

5. Output (Optional)
5.1 Flag
5.2 Input No.
5.3 Input value (Optional)
5.4 Actual response time
5.5 Required response time

5.4.12 Time Plot Reports
At the end of each run, the following data items can be tabulated or plotted by time.

1. Queue size per task/entry
2. Priority per task

3. Value of a program variable
4. 1/0 failures

5. I/O efficiency

5.4.1.3 Multi-Run Comparisons

Comparisons of different data items, in the form of the time plots shown above can
be made for the same model with different input arrival patterns or for different models
with the same arrival pattern.

5.5 Design Strategy using the ESDS

The designer can control the run and his method of analysis by means of the focusing
mechanism of the reports and the two modes of interaction. For example, he could start
in the continuous run mode at slow speed (i.e., the selected report will change on the
screen continuously but slowly. The first report should be at the highest level, system.
(See Table 3 above). As the run progresses, the designer will see the time change, the
average efficiency and duty cycle of each task (through the current time), and an array
of performance data on each of the I/O pairs, which basically will indicate whether the
required response times are being met. The designer can note the times at which
unusual or undesirable things happen. He can also stop the run at any time, change
report and/or mode. That is, he could switch to stop frame mode and to a more
detailed report. He can also restart the simulation and run at high speed up to a
specified time and then continue with any desired mode and report. The situation is
analogous to a movie projector with variable forward speed and stop frame motion, but,
in addition, the user can change the viewing level of detail as well. If more detailed
information were desired on the task, then the fask report could be selected, in which
case, for selected tasks, the designer would see the current time, priority at that time,
efficiency, duty cycle, the amount of time spent thus far in the various states (running,
executing, at rendezvous, etc.), current queues, and time weighted queue average
through the current time.

-32-

If still more detailed information were desired for selected tasks, the third level, event,
could be viewed via the event and queue reports.

The designer would be looking for the bottlenecks that are causing specific I/O
responses to fail. These causes are traceable to particular tasks and events within the
task. There are a number of design decisions that can be modified as a result of the
analysis:

(1) The number of processors.
(2) Task composition and functions
2.1 Number and function of entries
2.2 Distributed vs. centralized processing
(3) Task priority
(4) Task allocation: static vs. dynamic
(5) Task call protocol: conditional vs. unconditional
(6) Estimated (or specified) event execution time. (This may also imply an
algorithm.)
(7) Implication of hardware vs. software by items (2) and (6).
(8) Input pattern (arrival distribution and times)

For a total view of the run, the designer can print any of the four time plots which will
correlate queues, task priorities, I/O failures and 1/O efficiencies with time and with
each other. The designer can also print the interactive reports as well, so that the detail
can be examined along with the time plots.

Multi-run comparisons can then be made for different input patterns and different

models. These will enable the same report data elements to be simultaneously displayed
for different runs and models.

-33-

6. Design for Factors 3 and 4: Multistate Task Activation and Scheduling

The objective of this project task is to apply and extend existing scheduling and
allocation algorithms to mutistate systems design. Section 6 extends Chetto’s guarantee
test algorithms to the multistate case. Section 7 describes a method of dynamic task
migration (re-allocation) that is applicable to the multistate case and is used when the
extended guarantee test algorithm fails for a particular task in its originally or currently
assigned processor. Also explored is pre-emptive re-allocation, that would be applied
before failure.

6.1 Problem Statement

6.1.1 Hardware Environment

The hardware environment under study is a distributed one. It consists of N nodes.
Each node has one processor. Each node can communicate with any other node
directly.

6.1.2 Software Environment

The software environment consists of a set of tasks. A task is the basic schedulable
software unit. The following characteristics of a task are essential for the research.

6.1.2.1 Task Types

Tasks can be classified into two types, periodic and sporadic. Periodic tasks are defined
by T = {T.(s;, ¢i, 1y, ps), 1 = 1,2,..,n}, where

s, - Initial request time of task T,.
¢, . Computation time for each request of task T,.
r, - Required response time from time of request for task T;. After a

request is made ar, is used to denote the absolute response deadline,
which equals the time when the request is made plus r,.
p; : Period of task T,.

Sporadic tasks are defined by S = {S,(c,, d,), i=1,..,m}, where
¢, : Computation time for each request of task S,.
d, : Required response time from time of request for task S;. After a request is
made a-, is used to denote the absolute response deadline, which equals
the time when the request is made plus d;.

6.1.2.2. Task Allocation to Processors (Nodes)

Each task is assigned initially to a particular node, which will be called the home node
of the task. If a task can only be executed at its home node then it is said that the task
is assigned to the home node {\it statically}. If a task can also be executed at a remote
node then it is said that the task is assigned to the home node dynamically.

(1) Every periodic task is assigned to a node statically.

-34-

(2) Every sporadic task is assigned to a node dynamically.
6.1.3. System States

At run time each node can be viewed as a finite automaton. Each node will have states,
inputs and outputs.

(1) Each node has one or more states. It will assume an initial predefined
state.

(2) The inputs of an automaton are the execution of sporadic tasks with this
node as home node. Each periodic task has a status. It is active if it is
allowed to be scheduled. Otherwise, it is inactive. A periodic task is
activated if its status changes from inactive to active, or deactivated if its
status changes from active to inactive.

(3) The ouputs of an automaton are the commands which change some periodic
task’s status within the same node; i.e., those tasks activated or deactivated
by the output. It will be assumed that tasks are activated or deactivated
only by the execution of a sporadic task. Note, in the automaton the
execution of a sporadic task plays the input role while the output only
affects periodic tasks.

6.2 Definitions

active
A task is said to be active if it is released and ready to be processed.

schedulable
A set of tasks is said to be schedulable if and only if there exists at least
one valid schedule.

optimal
A scheduling strategy is said to be optimal if there exists at least one valid
schedule for a set of tasks, and this scheduling strategy will find one of
them.

request
The request of a particular sporadic task to be scheduled, or the automatic
request implied by the beginning of the period of a periodic task.

ED
The Earliest Deadline as soon as possible scheduling strategy.

guarantee
The schedule for a set of tasks, which may include periodic tasks and/or
sporadic tasks, is said to be guaranteed if and only if a valid schedule can
be produced for all the tasks from current time ¢ to infinity. When we say a
task S is guaranteed it means that the task S is inserted into the current

-35-

active task set and a valid schedule produced for all the tasks from current
time ¢ to infinity.

ei(t)
A function e,(t) is defined for each periodic task i. It denotes the
accumulated CPU time of the periodic task T, up to time t, since its last
request.

A necessary condition for T to be schedulable is
z{i=1,n} c,/p, leq 1.

It is obvious that total computation time requirements can not exceed CPU
power.

A sufficient condition for T to be schedulable is
={i=1,n} c,/r, leq 1.

The necessary condition is the bottom line to be satisfied. But the above
sufficient condition is too conservative. In many cases even though this sufficient
condition is not satisfied there are still opportunities to obtain a valid schedule.
For example, let T = {T,(s,, ¢, 1, p;), i = 1, 2}, wheres, = 0,¢, =5, 1, = 6,
p. = 20,5, =10, ¢c; = 5,1, = 6, p, = 20, and ={i=12} ¢,/p;, = 0.5 leq 1,
2{i=1,2} ¢,/r, = 10/6 geq 1. The necessary condition is satisfied. But the
sufficient condition is not satisfied. A necessary and sufficient condition can also
be obtained by constructing a schedule using certain strategy, such as ED strategy.
Because the ED strategy is optimal it will certainly expose any valid schedule for
the time-critical task set if there exists one. Because it is impossible to construct
an infinite schedule, the remain issue is then to find the sufficient length of
schedule to be constructed, which will imply the validity of infinite schedule, and
how to construct it.

For a given periodic task set, T, it has been stated [S5] that if {forall ij} (s, = s,
and 1 leq i,j leg n) then it is sufficent to construct a schedule within [0, P], where
P is the least common multiple of {p,,....p.}, and if {therexists ij} (s, ne s; and 1
leg i,j leg n) then it is sufficent to construct a schedule within [0, s+2P], wherc s
= max(S,...,S,)-

For a given node the CPU power is fixed. It is essential to determine how much
CPU power is left when all supported periodic tasks are guaranteed. The term
idle time is used to denote this unused CPU time. The idle i/me can then be
assigned to sporadic tasks, which represents the maximum time available to
sporadic tasks.

Let fED'(t) be the idle time function of a processor that supports the task set T
using the ED scheduling strategy.
fED'(t) = cases
1, if t belongs to idle time.
0, otherwise.

Note: fED(t) is a periodic function, fED*(t+p).

Let a(t,, t;) be a function of total processor idle time between time t, and t,.
a(ty, t;) = {integral(t,t,)} fED'(t)dt.

If there is no sporadic task in the system it is assumed that the CPU of the node
has enough power to handle the periodic task set T.

6.3 Guarantee Test Theorems

The following subsections will discuss the guarantee test theorems which essentially will
precalculate how much idle time is available and if the current active tasks, including
periodic and sporadic ones, can be guaranteed.

6.3.1 A Non-Optimal Guarantee Test Theorem

At initialization time, assuming no sporadic tasks to be scheduled, the idle time within
the time window [kp, (k+1)p}, {forall k geq 0} can be computed by using the ED
strategy. At any moment let S = {S .(c,;, d,), i=1,...,m} be the current set of released
sporadic tasks at the node. Let S be ordered such that i It j implies ad, It ad;. If S(c,d)
is a newly occurant sporadic task and ad = ad,, then the following theorem holds [S6].

Theorem 1. Task S is guaranteed if {forall i in (h,...,m)}
z{j=1,i} c, leg a(t,ad,).

Theorem 1 provides a sufficient acceptance condition. The schedule for T implied by the
ED strategy at initialization

time will not be changed. Only sporadic tasks in S are tested to see if there is sufficient
idle CPU time to meet their deadlines. As the predefined schedule for the periodic task
set, T, will not be changed, the optimal scheduling strategy can not apply

globally to both T and S. The final schedule produced for all tasks, including both T
and S, is not necessarily optimal.

A similar non-optimal guarantee test theorem has also been developed by Ramamritham
and Stankovic [57].

In order to achieve an optimal schedule one should combine the two task sets and apply
an optimal scheduling strategy to the combination. This is the approach that Chetto
took.

6.3.2 Chetto’s Optimal Guarantee Test Theorem

Let S, denote the current sporadic task to be guaranteed and

t : The current time.

ad : The absolute response deadline of S,

ad,: The latest absolute response deadline of sporadic tasks in S.

e,(t): The remaining required execution time of task i at time t.
The following lemma determines the length of the required schedule that guarantees §,.
[47]

-37-

Lemma 1. Task S is guaranteed if and only if there exists a valid schedule within [ad,
ad,+P).

The lemma reduces the issue of the guarantee of a sporadic task to the issue of the
existence of a valid schedule within [ad, ad,+P). Consider all tasks within the time
interval I = [t, ad,+P], assuming that t geg s (s - max (s;,i=1,...,n). Some of the
request and computation time will be redefined fu: the purpose of formulating a new
task set for testing. But all the absolute response deadlines of the tasks remain the
same.

(1) All sporadic tasks that exist at time t are to be redefined as starting at
time t. Their new computation time will be equal to their formerly
remaining computation time, i.e. (ry - e,(t).

(2) All periodic task requests with deadline within [t, ad,+P] can be classified
into two cases. The first are those requesting earlier than t but not
finished execution yet. They can be redefined as starting at time t. Their
new computation time will be equal to their formerly remaining
computation time, i.e. (r, - e;(t). The second case are those requesting
later than t. They can be treated as released at their request time and
their computation time remains the same.

By combining the above two cases and treating each request as a distinct task with the
release time, execution time and absolute response deadline as described above, a new
task can be formulated on the interval I. In order to test the existence of a valid
schedule within [ad, ad,+P] let G denote those tasks within I with deadlines greater or
equal to ad.

G = {G,(s;, ¢;, D)), 1 = 1,.,N}
s, : Release (request) time for each task G,.
¢, : Computation time for each release of task G,.
D, : The absolute response deadline of task G;. after the release.

By assumption, forall i in (1..,N), s, geq t and D, leq ad,+P. m is the number of
sporadic tasks, and N leg m+p, where

p = ={j=1,n}ceil((ad,+P+ad)/p,), .
where n is the number of periodic tasks.

Let ad = ad, = D,. The optimal scheduling strategy ED can apply

globally to periodic and sporadic tasks within G when constructing a schedule. The
following optimal guarantee test theorem is developed based on the above formulation.
It is the main result of Chetto’s guarantee test theorem [46,47].

Theorem 2. Task S is guaranteed if and only if forall i in (q...N)
z{j=1i} c; leg D, - t.

This theorem can derive a linear time complexity algorithm.

-38-

6.3.3 Multistate Case: An Extended Guarantee Test Theorem
6.3.3.1 Additional Assumption: Activation and Deactivation of Periodic Tasks.

The results discussed above assume that a periodic task runs for the duration of the
program. In reality, one must consider systems in which periodic tasks can be activated
and deactivated at arbitrary times. Ward and Mellor [17] present 2 method of
describing systems in which tasks of any type are activated and deactivated based upon
various state transitions of the system. Their method does not distinguish between
periodic and sporadic tasks. For example, in a car cruise control system, when the brake
is applied a sporadic task is triggered, and the fuel injection control, which is a periodic
task should be deactivated. When the resume button is pressed another sporadic task is
triggered, and the fuel injection task should be activated.

This section extends the guaranteed test theorems of the preceding section to this case,
based on a series of additional assumptions.

Let the environment now be a distributed one. Each node has a local and identical
scheduler. A set of periodic and sporadic tasks are initially preassigned to each node.
With the absence of sporadic tasks, it is determined that each node has enough power to
guarantee all active tasks. If a sporadic task occurs, a guarantee test algorithm will first
try to guarantee it at the local node. If it cannot be so guaranteed, it will be migrated
to other node where it can be guaranteed. Only when no other node in the distributed
environment can guarantee is it determined that no system guarantee is possible.

Assumption 1:
The execution of a sporadic task may activate and/or deactivate some periodic
tasks. The system has finite internal states. The execution of each sporadic task
may cause the system to transit from one state to another. Each transition may
activate and/or deactivate a subset of the periodic tasks. The current active
periodic task set, those activated, will vary with the current system states.

Assumption 2:
If two or more tasks have the same absolute response deadlines the tie will be
broken by a predefined rule. This results in a unique scheduling order for any
pending task set.

Assumption 3:
Each periodic task will either be executed completely or not at all. Each
periodic task has an initial request time s;, and all subsequent requests will be
made at s, + jp,, where $8p, is the period and j is the jth request. If a
deactivation of the periodic task happens at time t, where s, +jp; < t <
sy +(j+1)p;, then the request made in this period will be allowed to finish if the
request has been partially served and will not be allowed to finish if the request
has not yet been served.

Assumption 4:
Only sporadic tasks can migrate to another node for execution. If a sporadic task
activates and/or deactivates a periodic task it will do so even though it is
executed remotely (ie, in another node).

-39.

Assumption 5:
The activation and deactivation will happen at the absolute response deadline.
This will simplify the task of scheduling construction. At run time when a task has
been migrated, the local node will know when to activate and deactivate other
periodic tasks by the migrated task.

6.3.3.2 Extended Guarantee Test Theorem

Because the occurence of a sporadic task can change the active
periodic task set, the Chetto guarantee test theorem can not apply. Two steps are taken
to extend Chetto’s theorem. First is to define the length of schedule time sufficient to
limit the schedule constructing process. Second is to actually
construct teh schedule. Before proceeding it is necessary to define some terms.

S;: Denotes the ith pending sporadic task. These tasks are sorted by their

deadlines.
ad;: Denotes the absolute deadline for S,.
J: Denotes the complete set of periodic tasks in the node.

J;: Denotes the active periodic task set after the execution of current pending
sporadic task S;.
P;;: Denotes the least common multiple of periods for tasks in J,.
: Denotes the current pending sporadic task set.

Lemma 2. Assume that a periodic task set, J, is feasible and let SC be the schedule
produced by ED. A sporadic task S is inserted into the schedule with deadline at
time d; let SC' denote the schedule after insertion and let t; be the actual completion
time (t, leq d). Then for any t, > t,, if e;(t;) > e,'(t,) then there is no idle time
between [ty, t;] in SC'. (e, is the remaining time for T, in SC and e,’is the remaining
time for T, in SC’)

Proof

Because the ED strategy is used, the scheduling sequence of existing tasks will not be
affected by the insertion of s.

Suppose there is idle time at t (t; < t < t,) for SC'.

Based on ED all the tasks scheduled after t will not be

affected by the insertion, so that we must have e,(t;) = e,'(t;). This is contrary to the
assumption; hence there must have been no idle time between [t,, t,]. QED.

Suppose a newly occurred sporadic task, S;, with absolute deadline ad; has been inserted
into the set of pending sporadic tasks. Let the last of this set be denoted S, with
absolute deadline ad,. After revising all J, to $J,, the following lemma can be stated.

Lemma 3. Task S, is guaranteed if and only if there exists a valid schedule within [ad,,

ad,+P,.).
Proof

(Only if part) . N
If s, is guaranteed, according to the guarantee definition, there exists an infinite valid

-40-

schedule which implies a valid schedule within [ad,, ad,+P,,).

(If part)

The schedule that would be produced by ED without S, is assumed to be valid because
all sporadic tasks that occurred previously

were guaranteed. This follows from the fact that S, is scheduled after all sporadic and
periodic task requests with deadline smaller than ad,. The schedule previously produced
within [t, ad,] (t denotes current time) will not be affected by the insertion of S, and so
remains valid. Therefore, a feasibility

test is only required after ad;. From ad, on the active periodic task set will be J, and
the least common multiple periods for J is Pj,.

Because all pure periodic task sets are assumed to be feasible, let SC denote the
schedule that would be produced for J, by ED and let SC’ denote the schedule after any
delay caused by all of the sporadic tasks before ad,. This can be made equivalent to the
insertion of one large sporadic task at ad,. Given that there is a valid schedule between
[ad,, ad,+P;,], we will show that no task requests after ad,+P;, will miss their
deadlines.

Suppose there is at least one request occurring after ad,+P;, that misses its deadline.
Denote the index of the first of these as i, occurring at time t’ (note: t' > ad,+P,,.
Then we have e,(t’) < e,(t'-Py;). But according to Lemma 2 there must be no idle time
between [t'-Py,, t']. The total computation time demanded between [t'-P;,, t'] is strictly
larger than P, which implies that ={i in J.} ¢,/p; > 1. This is contrary to the
assumption that J, is feasible. From above we know that no task will miss its deadline.
Thus, there exists an infinite valid schedule, which implies S, is guaranteed. QED.

If a time length 6 can be reserved before time t without disturbing a valid schedule
infinitely then we say available time § is guaranteed before time t.

Corollary 1. Available time § is guaranteed before time t if

and only if there exist a valid schedule within x

X = cases
[t, ad,+P,.), If (t leg ad,).
[t, t+P;), If (t > ad,).

Proof

Formulate a dummy sporadic task S; with ¢; = 6, ad; = t. Assume that this is the
newly occurred sporadic task and then follow the same proof as Lemma 3. QED

Now let us formulate a global task set for all requests made between time period [t,

ad, +P,.].

where
(1) All requests made by sporadic and periodic tasks during the time window
are sorted by their deadlines.
(2) For a request G,, as; is the absolute start time, ac; is the absolute
computation time required, D, is the absolute response deadline for the
request.

G = {G,(as,, ac;, D,),j=1..,N}.

-41-

(3) N is the total number of requests remaining in the time window which
includes those requests made before t but have not completed execution
and those requests made after t with absolute deadline smaller than
$ad 4+ P,

(4) For a periodic task T,(s,, c,, 1;, p;)

as; = cases
t, if request is made before t.
s, +kp,, for some k,
if request is made between [t, ad,+P,,].
ac; = ¢, - ¢(t), Dy = s; + kp; + 1y, for some i, j, k.
(5) For a sporadic task S;(c,,d;), as; = t, ac; = ¢, - €,(t), D, = ad,_

Theorem 3. Let q be the index of request in G made by task S, then task S, is
guaranteed if and only if forall i in (q,...,N)

z{j=1li}ac; leg D, - t. (1)
Proof

Only if part

Suppose there is an i in (q,...,N) such that (1) does not hold. This would mean that the
time demanded by requests (1,...,q) is strictly larger than the available time D, - t. The
request i can not meet its deadline. So S, is not guaranteed. Contradiction.

If part

Let i denote the request index in G which is made by S,.

Suppose there is a request with index j that missed its deadline.

For the case j leq i, based on the ED strategy there must be no idle time between (t,D;).
Therefore, (1) cannot hold. Contradiction.

For the case j > i, all requests after i are made by pure periodic tasks in J, because

request j missed the deadline. According to Lemma 2 there must be no idle time
between (t, D,0. Therefore (1) can not hold. Contradiction. QED.

-42-

7. Design for Factors 3 and 5: Multistate Task Activation and Migration (Dynamic
Re-allocation)

7.1 Task Migrauun (Dynamic Re-allocation)

Once the guarantee test theorem has been applied to a newly presented sporadic task,
there are two possible results. One is that the sporadic task can be guaranteed, in which
case nothing more need be done. The other is that the sporadic task cannot be
guaranteed. Then migration to another processing node must be considered. This
section will investigate the issue of migration, in two parts. One is to select the task at
the local node for migration; the other is acceptance of the task migration request from
a remote node. The first part will be the main issue and focus in this section. The
second part can be solved simply by applying the guarantee test theorem at the selected
remote node.

7.2 Task Selection

If the system has no State Transition Diagram (STD) and no periodic tasks can be
activated or deactivated by the execution of sporadic tasks, the selection of sporadic task
for migration presents no problem. The currently occurring S will be the candidate for
migration, because before S occured, all tasks supported by the node were guaranteed.
If the system has an STD and the currently active periodic task can vary with change of
state, the issue of sporadic task selection for migration becomes nontrivial. Execution of
S may activate currently non active periodic tasks within the original node of S.
Inasmuch as it is assumed that all periodic tasks originally assigned to a node are
feasible, there at least exists a feasible solution, namely, migrate all sporadic tasks. The
problem then becomes that of selecting those sporadic tasks that will in some sense
maintain optimal system performance.

7.3 Criteria of Sporadic Task Selection for Migration
Four selection criteria are proposed:
(1) The least number of sporadic tasks.
(2) The least total computation time.
(3) The least time to select either criterion (1) or (2).
(4) The sporadic tasks with greatest slack time (ie, ad,-(r,-e,t))-t).

The first criterion is based on the assumption that equal effort will be spent to migrate
each task regardless of its size. The second is based on the observation that minimum
load should be migrated in order to maintain over-all stability (ie, minimize the
probability of further migration). The third criterion is to minimize the effort of task
selection and therefore reduces the overhead. The fourth criterion identifies tasks that
would be more tolerant to migration delay, but it is somewhat more complex and will
not be further investigated in this paper; it could be a candidate for future work.

7.4 Task Selection Theorem
As described in Section 2, a global task set G is formed before applying the guarantee
test theorem.

G = {Gy(as,, ac;, D)), j = 1,..,N}

43-

The set G consists of all current active periodic and sporadic tasks sorted by their
absolute deadlines D,. The current sporadic task set is S,,...,S;, sorted by their absolute
deadlines. The current sporadic task has an index h, ie, S,. Each sporadic task
corresponds to one task in G, i.e. S, = G, for some i and j. The guarantee test is
applied to G. In the following, when we say a test failed at k, it means that it failed at
task G, (which may either be a periodic or sporadic task. Suppose k is the smallest
index value of G that fails the guarantee test of Theorem 3 (ie, ={j=1,k} ac, leq D, - t
does not hold), then we say that the test is guaranteed at k-1. The failure of the test is
caused by the presence of sporadic tasks which compete with periodic tasks for CPU
time. According to the ED strategy, a sporadic task with a later absolute response
deadline could be scheduled before some periodic task with earlier absolute response
deadline if there is any idle time before that periodic task. If a guarantee test fails at k
then we say that a sporadic task is related to the failure if it consumes any CPU time
before G,. Otherwise it is not related. Let S,,...,.S; be the current pending sporadic tasks
which are sorted by their absolute response deadlines (ie, ad, leq ,..., leq ad,).

The following theorem states that if a guarantee test fails at k then any sporadic tasks
with absolute response deadlines later than D, will not be related to the test failure.
The significance of this theorem is that it will narrow the range of possible candidates
for migration.

Theorem 4. Suppose Theorem 3 fails at k (ie, ={j=1,k} ac, leg D, - t does not hold). If
ad, leq D, leq ad,,, then S,,,,....S, are not related to the failure of the test at k.

Proof:

Let af, be the actual completion time S, and af, leq ad,. Because the ED is used and
af, leq D,, there is no idle time between [t, af,]. According to Lemma 2 there is also no
idle time between [af;, D,]. That is, from t to D, the CPU is completely busy. Because
the absolute response deadlines of all the sporadic tasks of S,,,,...,S, are after D, they
will not have a chance to consume any CPU time. So they are not related to the failure
of the test at k. QED.

The above theorem shows how to narrow the possible related sporadic task candidates.
For these task candidates, the following theorem will state an adequacy condition for
migration to guarantee local tasks. First a lemma will be stated for resolving a single
test failure.

Lemma 4. If a test is guaranteed at k-1 and fails at k by é (i.e. Z{j=1k} ac; =
D,-t+6), and if $ad, leq D, leq ad,,, then migrating any task S,, where 1 leg j leq i, such
that 6 leg c; , will guarantee the test at least at k.

(Without loss of generality, S; may be considered as several tasks combined such that
their total computation time equals c,.)

Proof:

It is obvious that migrating a task to another node will not cause the test failure before
k. Suppose that after migrating some S;, where 1 leq j leq i, such that § leg c,, the test
still fails at k. According to the ED strategy and Lemma 2 there must be no idle time
between [t, D;]. The CPU time previously consumed by S, must be used by G, or there
must be idle time. Contradiction. QED.

-44-

Now suppose that a test fails at k by §. The migration of some S; (where c; = &) does
not guarantee that the test will not fail after k. Theorem S presents the migration
adequacy condition for resolving multiple test failure, where a multiple test failure is
acfined as fullows. Suppose thcic ate p guarumee test failures, at k,,...k;, which fail by
&1,..,6,. Each value of §, (where 1 leq i leq p) is derived by assuming that the previous
failures have been recovered by migrating certain sporadic tasks with total computation
time equal to 6, + 6, + ... + §,_,.

Theorem 5. If a guarantee test fails at k;,....k, by §,,...,6, and if a sporadic task set T
can be chosen that satisfies the following condition: forall i (1 leq i leq p), therexists a T,
(T, subset T') with all absolute deadlines earlier than D,.; and the total computation
time for the sporadic tasks in I’y geg £{j=1,i} &, then after the migration of I, all tasks
can be guaranteed at the local node. '

Proof:

Consider first the failure point k,. According to Lemma 4, migration of some sporadic
task(s) with computation time §, is snfficient to recover failure point k;,. Now consider
failure point k,. Migration of some sporadic task(s) with computation time §, + §,.
From the preceding, §, is used to recover failure point k,, and according to Lemma 4,
8, is sufficient to recover failure point k,. By induction, the rest of the failure points
can be recovered in the same way. QED.

7.5 Preliminary thoughts on pre-emptive strategies

Sporadic task selection is further complicated if each node is required to execute a
sporadic task either completely or not at all. For example, consider three sporadic tasks,
S., Sz, S, in absolute response deadline order, ie, ad, leq ad; leq ad;. Assume that they
arrive in reverse order. S, arrives first, partially execute, and then S, arrives. S,
partially executes, and S, arrives. The guarantee test algorithm detects that the node is
overloaded. If a sporadic task is required to be executed by a node either

completely or not at all then the only candidate for migration

is S,. If the migration of S; cannot solve the problem

then the system has to fail. On the other hand, if S, were

premigrated before S, arrived, the system may survive after S, arrives. We define this
situation where the system has more than one partially executed sporadic task as an
unsafe condition.

A major significance of the unsafe condition is that it leaves little migration choice when
the node is overloaded. The system may or may not fail, depending on the values of
the deadlines and the &s, but this uncertain condition does limit the adaptive capability
of the system. It is therefore desirable to prevent the unsafe condition.

7.5.1 Heuristics for Preventing System Failure Caused By Unsafe Condition
If there is incomplete knowledge about the occurrence of sporadic tasks then there is no

way to completely prevent the unsafe condition; however, some observations provide
ways to reduce the chances of incurring it and alsc of preventing the worst case of it. *

45-

Let S,,....Sq be the current active sporadic task set, sorted by their absolute
response deadlines but triggered (ie, arriving) in reverse order. S,....,S, are
executed partially. S, is the current task and is the only candidate for migration
if it can not be cuaranteed. We define this condition as the worst unsafe
condition.

The worst unsafe condition gives the least task selection choice for migration when the
system is overloaded. In order to prevent potential system failure caused by this
condition it should be eliminated completely if possible or prevented when it tends to
develop. Several heuristics can be suggested for accomplishing this. objective.

First, we observe the fact that if all sporadic tasks are ordered by their relative response
deadlines then we have S,, S,,...,.S,, which means that d, leqg d, leq ... leq d,. Ifd, = d,
= ... = d, then it is easy to see that no matter in what order they arrive their absolute
response deadlines will be in that order. This implies that no unsafe condition can
develop. In this case the unsafe condition is completely eliminated.

This ideal suggests the following heuristics:
(1) At design time, assign those sporadic tasks that have close length of relative
response deadlines to the same node.
(2) At run time, migrate some sporadic task when the worst unsafe condition
tends to develop. How to determine the time when this precautionary
migration should be performed is still a subject of cur research.

7.5.2 The Request for Migration

After a candidate sporadic task is selected the local node will broadcast a request for
migration to all other nodes. The request for migration will consist of the following
information.

(1) Request identifier. denotes the node where the request originated.

(2) Task identifier: denotes the task to be migrated.

(3) Computation time: denotes how much CPU time isn needed to execute this
task.

(4) Absolute deadline: denotes the time when the execution of the task must be
complete. When an acceptance from another node is received the task is
migrated immediately. If no node can accept this task the local node has to
guarantee it if it can be guaranteed or to invoke failure handling if it cannot
be guaranteed at the local node.

7.5.3 Acceptance of Migration
When a node receives a migration request it will first determine whether the request
can be guaranteed. According to Corollary 1, Theorem 3 can simply be used to test if

the remote task can be guaranteed locally or not. If the test is positive it will return a
"ves” answer to the requesting node; otherwise it will return a "no” response.

-46-

8. Data Structures and Algorithms

This chapter develops the data structures and algorithms that are used in the simulation
experiments of Chapier 9. They are based on the theorems developed in Chapters 6
and 7.

In the distributed system environment, all nodes are considered logically identical and
will therefore have the same data structures and algorithms.

The data structures and algorithms are presented here as high level abstractions for the
purpose of description and preliminary design of the simulatotion. They will be refined
and detailed as part of the work of the project.

8.1 Data Structures
(1) A set of all periodic tasks, PTASKS

Each element of PTASKS is denoted as T,(s;,c;,r;,p;) which contains initial request
time (s;), computation time (c,), relative response time (r,), and period (p;).

(2) A set of active periodic tasks, A PTASKS;

A_PTASKS, denotes those periodic tasks that will be activated by the current
pending sporadlc task S,. It is a subset of PTASKS. A _PTASKS, denotes the
current activated sporadlc tasks.

(3) A set of all sporadic tasks, STASKS

Each element of STASKS is denoted as S;(c;,d;), where c, is the computation time
and d, is the relative deadline.

(4) An array of active sporadic tasks, A STASKS

A _STASKS represents all current pending sporadic tasks to be processed. It
is a subset of STASKS. An element of A STASKS is denoted S,(c,, ad,), where
ad, is the absolute deadline. The array is sorted by ~ absolute deadlines.

(5) State Event Matrix, SEM

SEM is a two dimensional array data structure with subscripts state and event. It
represents a finite state machine driven by events. The events are defined by
the execution of sporadic tasks. Each entry of the array contains information
of next state, and activation and deactivation of periodic tasks.

(6) An array of global tasks, G_TASKS
G_TASKS denotes those active periodic and sporadic tasks which are in the
time window [tau, ad, + P,,] described in Section ???. Each element of

G _TASKS is denoted as Gy(as,, ac,, D,), where as,, is the absolute start time, ac;
is the absolute computation time, and D, is the absolute deadline. The array is

-47-

sorted by absolute deadlines.
(7v An array of failure points, F_ POINTS

An element of F_POINTS is denoted F,(index,, Delta,). It contains the index of
task Gjpqex-;(index-i), and how much it failed at that point (Delta,). It is sorted by index-
i.

(8) An array of selected tasks for migration, M_TASKS

M_TASKS represents the sporadic tasks selected for migration. An element of
M _TASKS is denoted M,(index-i), which contains the index of a sporadic task.

Two functions will be used in the algorithms.
(1) ac(Gy)
This function returns the absolute computation time of task G;.
(2) ad(G))
This function returns the absolute deadline of task Gji.
8.2. Guarantee Test Algorithm

The guarantee test algorithm is based upon Theorem 3 in Section ???. In addtion to
performing the test, the algorithm will also return all failure points if the currently
occurring sporadic task S cannot be guaranteed. The failure points then will be used by
the task selection algorithm for migration.

Algorithm:
guarantee-test

Input:
Current, occurred sporadic task S.

Output:
If S is guaranteed then return "GUARANTEED” else return "NOT
GUARANTEED" and F_POINTS.

Body:
Insert S into A_STASKS.
The A_PTASKS, is known.
Suppose there are m tasks in A_STASKS.
fori:=1tomdo
use A_PTASKS, _,, S, and SEM to derive A_PTASKS,.
end for.
Build a G_TASKS from A_STASKS and all A_PSTASKS,.

-48-

Suppose there are N tasks in G_TASKS and S = G;.
sum := 0.
fori:= 1to h-1do
sum := sum + ac(G,).
end for.
fori:= hto N do
sum := sum + ac(G,).
if sum > ad(G;) then
insert a tuple (i, sum - ad(G,)) into F_POINTS.
sum := ad(G,).
end if.
end for.
if F_ POINTS 1s empty then return "GUARANTEED" else return "NOT
GUARANTEED" and F_POINTS.

8.3. Task Selection Algorithm

The task selection algorithm uses a backward search to find those sporadic tasks with
deadlines as late as possible in order to guarantee the rest of the tasks. It is a tentative
version of the task selection algorithm because it does not necessarily satisfy the criteria.

Further analysis is still required.
Algorithm:
task-selection

Input:
F POINTS.

Output:
If successful then return "SUCCESS” and M_TASKS else return "NOT
SUCCESS".

Body:
Because S1,..,.Sm is in order, Gg,,...,Gg, is also in sorted order.
Because F1,...,Fl is in order, Gg,,...,Gy; is also in sorted order.
Suppose Gy, is the one with the latest absolute deadline, but ad(Gsg,) .leq.
ad(Gy,).
sum := ac(Ggy).
put k into M_TASKS.
j:=k
i:=1L
loop
if sum > ac(Gy,;) then
if i = 1 then return "SUCCESS” and M_TASKS
else

if ad(Gs;) .It. ad(Gg,-,) then
sum := sum - ac(Gg,).
i:=1-1

-49.

else
ir=i1-1
while ad(Gg;) .gt. ad(Gy,)
ji=j-1
if j = 0 then return "NOT SUCCESS".
end if.
end while.
sum := ac(Gsg;).
put j into M_TASKS.
end if.
end if.
else
ji=j+ 1
if j = 0 then return "NOT SUCCESS".
sum := sum + ac(Gs;).
put j into M_TASKS.
end if.
end loop.

-50-

10.

11.

12.

13.

14.

15.

References

L. MacLaren, "Evolving Toward Ada in Real Time Systems,” ACM Sigplan, Vol
15, No. 11, Nov 1980.

M. Jackson, Principles of Program Design, Academic Press, 1975.

K. Shin, "Introduction to the Special Issue on Real-Time Systems,” IEEE
Transactions on Computers C-36.8 (Aug. 1987): 901-902.

C.D. Locke and D. Vogel, "Problems in Ada Runtime Task Scheduling,” Ada
Letters 7.6 (Fall 1987). International Workshop on Real-Time Ada Issues.
Moretonhampstead, Devon, UK. 13-15 May 1987.

D. Cornhill, " Four Approaches to Partitioning ADA Programs for Execution on
Distributed Targets,” Proc IEEE Computer Society Conf on Ada Applications and
Environments, 1984.

I. Lee and V. Gehlot, "Language Constructs for Distributed Real-Time
Computing.” Proceedings, Real-Time Systems Symposium. San Diego, Ca. 3-6
Dec. 1985. 57-66.

J. Stankovic J and S. Cheng, "Evaluation of a Flexible Task Scheduling
Algorithm for Distributed Hard Real-Time Systems,” IEEE Transactions on
Computers C-34.12 (Dec. 1985): 1130-1143.

K. Heninger, J. Kallander, J. Shore and D. Parnas, "Software Requirements for
the A-7E Aircraft,” NRL Memorandum Report 3876, November, 1978

J. Martin, Design of Man-Computer Dialogs, Prentice Hall Inc., Englewood Cliffs,
NJ, 1972

G. Andrews and F. Schneider, "Concepts and Notations for Concurrent
Programming,” ACM Computing Surveys 15.1, pp 3-43, March 1983.

C.AR. Hoare, "Communicating Sequential Processes,” Communications ACM
21.8, pp. 666-677, Aug. 1978.

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood
Cliffs, NJ, 1985.

J.D. Ichbiah, et al, "Rationale for the Design of the Ada Programming Language,”
ACM Sigplan Notices, Vol 14, No 6, June 1979.

H. Gomaa, "Software Development of Real-Time Systems,” Communications ACM
29.7 pp. 657-668 July 1986.

H. Gomaa, "A Software Design Method for Real-Time Systems,” Communications
ACM 27.9, pp 938-949 Sept 1984.

16.

17.

18.

19.
20.

21

22.

23.

24.

25.

26.

27.

o
\D

31
32.

H. Simpson and K. Jackson, "MASCOT and Multiprocessor Systems,” Systems
Designers, Ltd., Surrey, England, Feb 4, 1983.

P. Ward and S. Mellor, Structured Development for Real-Time Systems, 3 vols,
Yourdan Press, New York, NY, 1985-86.

D. Hatley and I Pirbhai, Strategies for Real-Time System Specification, Dorset
House, New York, NY, 1988

T. Demarco, Structured Analysis and System Specification, Prentice Hall, 1979.

D. Wood, "Methods Evaluation Technical Report,” Software Engineering Institute,
Aug 11, 1989.

D. Harel, "Statecharts: A Visual Approach to Complex Systems,” Concurrent
Systems, Feb 1986.

J.F. Stay, "HIPO and Integrated Program Design,” IBM System Journal, No. 2,
1976.

E. Yourdan and L. Constantine, Structured Design, Prentice Hall, Englewood
Cliffs, NJ, 1979.

D.L. Parnas, "A Technique for Software Module Specification with Examples,”
Comm ACM, vol. 15, No. 5, May 1972.

G. Booch, "Object Oriented Development,” IEEE Trans. on Software Engineering,
vol SE-12, No. 2, Feb. 1986.

R. Abbott, "Program Design for Informal English Descriptions,” Comm ACM,
Vol. 26, No.11, Nov 1983.

R.J.A. Buhr, et al, "Software CAD: A Revolutionary Approach,” IEEE Trans. on
Software Engineering, vol 15, No. 3, Mar 1989.

P. Chen, "The Entity-Relationship Model - Toward a Unifying View of Data,”
ACM Trans. on Data Base Systems, vol.1, No. 1, Mar 76, pp 9-36.

J. Martin, Computer Data-Base Organization, Prentice Hall Inc., Englewood Cliffs,
NJ, 1975

CJ. Date, An Introduction to Database Systems, 3rd Edn, Addison Wesley Pub.
Co., Reading, MA 1981.

D. Lefkovitz, File Structures for On-Line Systems, Sparten Books, 1967.

1. Nassi I and B. Schneiderman, "Flowchart Techniques for Structured
Programming,” ACM Sigplan Notices, Aug 1973.

33.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

R Maaes, "On the Representation of Program Structures by Decision Tables: A
Critical Assessment,” Computer Journal, Vol 21, No. 4, 1978.

J.D. Warnier, Logical Construction of Programs, Van Nostrand Reinhold, 1974.

M. Gordon, "The Byron Program Development Language,” Journal of Pascal and
Ada, p24, May 1983.

J.V. Guttag, et al, "The Larch Family of Specification Languages,” IEEE Software,
Vol 2, No. 5, 1985.

N.S. Prywes, et al, "Use of a Non Procedural Specification Language and
Associated Program Generator in Software Development,” ACM Trans. on
Programming Languages and Systems, Vol 1, No. 2, 1979.

J.R. Abrial, The specification language Z: basic library, Oxford Univ. Programming
Research Group, 1980.

M. Molloy, "Performance Analysis Using stochastic Petri Nets”, IEEE Trans. on
Computers, Vol C-31(9), 913-917, Sept. 1982.

A. Albrecht, "Measuring Application Development Productivity,” Proc. IBM
Applications Development Symposium, Monterey? CA, Oct. 14-17.

C. R. Symons, "Function Point Analysis: Difficulties and Improvements,” IEEE
Trans. on Sojftware Engineering, Vol. 14, No. 1, Jan 1988, pp 2-11.

C. F. Kemerer, "An Empirical Validation of Software Cost Estimation Models,”
Comm of the ACM, Vol. 30 No. 5, May 1987, pp 416-429.

J. Stankovic J and S. Cheng, "Evaluation of a Flexible Task Scheduling
Algorithm for Distributed Hard Real-Time Systems,” IEEE Transactions on
Computers C-34.12 (Dec. 1985): 1130-1143.

C.L. Liu and J.W. Layland, "Scheduling Algorithms for Multiprogramming in a
Hard Real-Time Environment,” J. ACM, vol 20 No. 1, pp 46-61, 1973

O Serlin, "Scheduling of Time Critical Processes,” Proc. Spring Joint Computer
Conf., 1972, pp 925-932.

H Chetto and M. Chetto, "Some Results of the Earliest Deadline Scheduling
Algorithm,” IEEE Tans. on Software Engineering, vol 15, No. 10, Oct. 1989

H Chetto and M. Chetto, "Scheduling Periodic and Sporadic Tasks in a Real-
Time System,” Information Processing Letters, Feb 27, 1989, pp177-184

J. Stankovic and K. Ramamritham, "The Design of the Spring Kernel,”

Proceedings, Real-Time Systems Symposium. San Jose, Ca. 1-3 Dec. 1987. 146-
157.

-53-

49.

50.

SL

52.

53.

54.

55.

56.

57.

8.

59.

60.

61.

62.

E. Jensen, C.D. Locke and H. Tokuda, "A Time-Driven Scheduling Model for
Real-Time Operating Systems,” Proceedings, Real-Time Systems Symposium. San
Diego, Ca. 3-6 Dec. 1985. 112-122.

W. Zhao, K. Ramamritham and J. Stankovic J, "Scheduling Tasks with Resource
Requirements in Hard Real-Time Systems,” IEEE Transactions on Software
Engineering SE-13.5 (May 1987): 564-577.

C.D. Locke and D. Vogel, "Problems in Ada Runtime Task Scheduling,” Ada
Letters 7.6 (Fall 1987). International Workshop on Real-Time Ada Issues.
Moretonhampstead, Devon, UK. 13-15 May 1987.

A. Mok, "The Design of Real-Time Programming Systems Based on Process
Models,” Proceedings, Real-Time Systems Symposium, pp 5-17, Dec. 1984.

C.D. Locke, "Best Effort Decision Making for Real-Time Scheduling,”
Dissertation, Carnegie-Mellon University, 1986. CMU-CS-86-134.

L. Sha, "On Priority Scheduling and Priority Inversion,” Message to Comp. Lang.
Ada (May 1988).

Leung, "A note on Preemptive Scheduling of Periodic Real-Time Tasks”,
Information Processing Letters, Vol. 11, No. 3, November 1980

Horn, “Some Simple Scheduling Algorithms”, Naval Res. Logist. Quart, Vol.21, pp.
177-185, 1974.

Ramamritham, "Dynamic Task Scheduling in Hard Real-Time Distributed
Systems”, IEEE, Software, July 1984.

Booch G, "Software Enginec 1g with Ada", Benj. Cummings Publishing Co,,
Menlo Park, CA, 1983.

Orr KT, "Introducing Structured Systems Design”, Infotech International,Ltd.,
Maidenhead, England, 1972.

Prywes NS, Pnueli A and Shastry S, "Use of a Non Procedural Specification
Language and Associated Program Generator in Software Development”, ACM
Trans. on Programming languages and Systems, Vol. 1, No. 2, pp 196-217,
October 1979.

D. Lefkovitz, "Event Oriented Design: A Description of the Methodology,”
Quarterly Report No. 7, InfoSoft Design, Contract No. N00014-85-C-0298, April,
1987.

Hamilton M and Zeldin S, "Higher Order Software -- A Methodology for
Defining Software”, IEEE Trans. on software Engineering, Vol. SE-2, No. 1, p9,
March 1976.

63. Buzen JP, et al, "Performance Oriented Design Reference Manual”, Contract No.
N00039-81-C-0183, BGS Systems, Lincoln, MA, Sept. 1981.

64. Pritsker A, Kiviat P, "Simulation with GASP II", Prentice Hall, (1969).

-55-

Appendix A
Program Structure Notation

The control and packaging of modules, characterized by Class 5.2 Control and
Packaging, has become rather complex, because there are five mechanisms operating
simultaneously. This means that the design process becomes a synthesis of these five
mechanisms, and the implementers, testers and maintainers, who come after, must have
a good map with which to follow these complex interactions. The five mechanisms are:
(1) A normal subprogram call within a program or task, (2) an intertask call, (3) a task
initiation, instantiation or termination, (4) an exception break within a subprogram and
(4) module or data structure packaging in the Ada sense. The first four imply a transfer
of program control, while the fifth is an aggregation mechanism used for design and
developmental reasons. In addition to these four main mechanisms there is a series of
sub control mechanisms such as alternative, sequenced, and iterative subprogram calls,
and selective and delayed task entries as in Ada.

It would be desirable to have a single, convenient but definitive descriptive notation for
all of these mechanisms. As discussed in the body of the paper, the closest such
notation are a combination of the Buhr diagrams and the Structure Charts of Yourdan,
which are variants on those devised by Jackson. They have the advantage of being
graphical, which seems to aid both in the conceptualization and synthesis of the design
and in its understanding by those who follow; however, they have a few drawbacks.
One is that neither alone does the entire job. Second, there are limits to graphics, when
the detail involved becomes too great. A textual notation is therefore offered in this
Appendix that covers all of the control and packaging mechanisms at once, is
expandable to enable any level of detail, can be created and maintained with a word
processor, and can be integrated with other textual (or graphical) components of the
system documentation, such as requirements, design and the implementation code. It is
called the Program Structure Notation.

The method uses a canonical notation to describe a tree, the nodes of which are
generically called process elements. The node notation will define the type of process
element and its relatlonshlp to other nodes, in the sense of control and/or packaging.
The node syntax is:

<prefix>" <node number> < <name> < [suffix]>>" < <{&}name> {<[suffix]>} > | *

where
<> is the entity symbol
{ is an optional ennty
is an entity repetition of zero or more times
[1, & and #* are literal symbols

[suffix]
The suffix is a mnemonic code that defines the process element type, as
follows:
MS Main subprogram
S Subprogram (also the default suffix value)

-Al-

name

Task

Package

Task entry (Ada accept)
Call to a task entry
Exception

Task Activation

clior el
~ >

This is the name of the process element that is assigned by the designer.
There is also a special dummy name designated as *. It represents a node
that contains no process element but is a part of the control structure, as
specified in the prefix.

The symbol & prefixed to a name means that the node is further
decomposed as a separate tree. The separate tree starts with node
number 1, but the actual node numbers of nodes within $name is the
concatenation of the &name number and the absolute number within the
$name tree.

Each program or task is represented by its own tree. Trees are linked by
[C] and [A] type process elements, where the former is the calling task,
and the latter is the entry of the called (accept) task. The name associated
with both the [C] and [A] nodes is the entry name. It is analogous to the
normal call of a subprogram, where the entire tree substructure from the
[A] entry downward subtends the [C] process element. Similarly, the [TA]
and [T] process elements specify the activation of a task [T] within a
process element [TA] at some point in another tree. (Ada provides two
mechanisms for activation: elaboration and declaration or dynamic
allocation of a task object.)

A node of the tree may be a composite of process elements; hence, the
repetition of names and suffixes. For example, it may be a subprogram [S]
within a task [T] within a package [P]. A node inherits all of its
immediate ancestor process element types unless they are explicitly
changed.

node number

prefix

The node number is a canonical number, 1, 1.1, 1.1.1,..., 1.2, 1.2.1, ... etc
that represents the position of the node in the structure tree.

*

The [C] to [A] and [TA] to [T] connections described above denote
internode relations. All of the other internode relations are specified by
the prefix. Figure Al presents the prototypical internode transfer of
control structure, where A, B and C represent process elements of the
types defined by the suffix. For example, if A, B and C are subprograms,

-A2-

then the figure is interpreted as: "subprogram A calls subprograms B and
C". If A and B are subprograms and C is an exception, then the figure is
imerpreted as: "subprogram A calls subprogram B and an exception C is
raised and handled in A". The prefixes specify certain relationships
among process elements at a given level, such as B and C. The prefixes
are defined in Table Al. In the Level Referenced column, immediate
means that the symbol applies to the level of the prefixed node; next
means that it applies to all nodes at the next nested level, up to a cancel
prefix, and previous means that it applies to the next higher level.

A

Fig. Al. Prototypical Internode Transfer of Control Structure

TABLE Al
Prefix Definitions
Prefix Name Level Meaning
Symbol Referenced

- sequence immediate If B and C (Fig. Al) have a - prefix, they are
always called from A and are performed in

sequence.
+ alternative next If A has a + prefix then

(exclusive) either B or C is called, but not both.
@ iteration next If A has an @ prefix then

level B is performed multiple times. A
common configuration would be A with an @
prefix and B and C with a - prefix.

% alternative next If A has a % prefix then B
(inclusive) and/or C can be called.

(Ada)select next If A has a : prefix, where A is a task or a
process element within a task, then A is
interpreted as a rendezvous, and B and C are
alternative entries within the select.

/x cancel X" previous If B or C has a /x prefix, then the prefix x
appearing on A is cancelled, where x is
assumed to be of type next.

Figure A2 presents an example in conventional Structure Chart (Call Tree) format,
Figure A3 is the Buhr Diagram, and Figure A4 presents the corresponding Program
Structure Notation. From presentation and information content standpoints the
graphical Structure Chart is both easy to understand and fairly complete. The Buhr
Diagram can become unwieldy as the number of interacting components grows, and the
subprogram call structure within the main subprogram or within a package is not shown.
What is shown are the packages and their subprogram and task entry interfaces (ie, the
visible part or specification). The Program Structure Notation contains the same detail
as the Structure Chart but in a purely textual format, so that it amenable to easy update,

electronic distribution, and expansion into PDL, further annoation, and ultimately the
code itself.

-Ad-

MS
st
S I e s 1
s2 P3.S5
S —F— S &]
S3 X1 | S6 TA S
: P1.T2 so
c s } s { i s | 5
P1.T1.E P2.54 s7 S1.58
P1.T2.E3
c |
P1.T1.E2

S

[s |
[sto | [Pasti]
LiiEND alternative (exclusive)

| @ akernaive {inclusive) A

—

Fig. A2, Example as a Structure Chart (Call Tree)

MS

P1

E' /1

P3

]

S5

fov/

L]

P2

S11

S9

Fig. A3. Example as a Buhr Diagram

-A6-

@1. S$1 [MS]
- 1.1 82 [S}
1.1.1 83
- 1.1.1.1 P1 [P]
T1[T]
Et [C]
-1.1.1.2 P2 [P]
S4
1.1.2 X1 [E]
- +1.2 P3 [P]
S5
% 1.2.1 S6
1.211 87
1.2.1.2 S1 [MS]
S8

12121 P1[P]

T1[T]
E2 [C]
1.22*
-1.221 P1[P]
T2 [TA]
-1222 89
12221 P1[P]
T2 [T}
E3 [C]
:2.P1[P]
T1T]
2.1 E1 [A]
2.2 E2 [A]
-221 S10[S)
-222 P2IP]
S11
3. P1[P]
T2 [T]
3.1 E3 [A]

Fig. A4. Example Combined in Program Structure Notation

-A7-

APPENDIX B
Use of the ESDS in Event Oriented Design

Step 1: Task Decomposition

Flight Keyboard (kbd)
Control (fc)
o Navigation Fhght
Nav'gahonal__. Processor Control Displ. Displ:
Sensor (NAV) Navigational (FC) B lattormi e prnd)
(nav) Data T ©5) s
Target/1nreat Data
Missisie/Target
Target/Threat Data
Data Radar (rad) ___,]
Missile Navig'n __,| Missile
(mnv) Control
Woeapon Fire Weapon (MC)
(wep) —-+{ Control F—— — — "
we) Target Data
Terminate (ter) ___)]
Missile Control

{mis)

Fig. B1: Data Flow Diagram of the Example

The example has five tasks, abbreviated NAV, FC, DIS, WC and MC. A solid arrow
between tasks indicates that the task at the tail calls the task at the head. Data that are
consumed by the called task, in response to the call, are shown below the joining arrow.
A dashed arrow (as between WC and MC) indicates that the task at the tail dynamically
initiates the task at the head. Once initiated a task may also be called. as is the case
here. The four tasks that are not dynamically initiated are elaborated and automatically
initiated at the beginning of the program run. External input signals are designated by
lower case mnemonics and appear at the tail of a solid arrow into a task. Ada
syntactically handles external interrupis and intertask calls in the same way, ie, as a task
entry; therefore, the diagrammatic symbolism is similar, except that the input signals do
not appear within a block. Output signals are indicated in the reverse symbolic manner
from inputs. They are also designated by lower case mnemonics.

In the example, there is a Navigational Processor (NAV) task that is driven by a

Navigational Sensor (nav) signal. The processor calls on the Flight Control (FC) task,
which consumes Navigational Data. Task FC has an output, Flight Control (fc). Table

-B1-

B1 presents the input/output pairs, r._quired response times, and the specified loading in
terms of input arrival rates. This information corresponds to that of specification
documents (3) and (4).

TABLE B1
Input/Output Response Times and
Input Loading

nPuT 0 eeeee-e- LOADING ------ OUTPUTS RESPONSE TIME
NAME TYPE -- TIME OF OCCURENCE -- MIN REQD
MANUAL PERIODIC/RANDOM
START PERIOD

nav Periodic 25 5 fe 11 13
dis 10 15
kbd Random 0 15 dis 1 2
wep Manual 5 dis 11 15
20
40
rad Periodic 10 8 mis 3 5
dis 6 10
mnv Periodic 10 7
ter Manual 25
60
80

The first line of the table indicates that the input nav causes the output fc to occur and
that the required response time is 12 time units. The type of input is specified as
periodic. The specific loading is given as a periodicity of 5 time units, starting at time
25. The loading information cculd be entered at any time before the actual run of the
simulation and can even be changed from one run to another. It is parametric data and
hence not an inherent part of the model specification. Also, under RESPONSE TIME,
a minimum (MIN) time is shown, which is the minimum possible time from the
indicated input to output. It comes from the Event Diagram.

Task FC calls on the Display (DIS) task, which outputs the signal Display (dis). Table
B1 indicates that nav-dis is also an I/O pair with a response time of 15. Task DIS also
has an external input, Keyboard (kbd). The table presents it as a random input with a
start time of 0 and a period of 15. This means that starting at time 0, a kbd input will
appear at a random time (uniform distribution assumed, though other generators could
be used) over the 15 unit interval. After the input occurs, another 15 unit interval starts
and another kbd input will randomly occur during this next interval. The Periodic and
Random input types are both of the automatic type described in Section 3.2. They
continue to be regenerated throughout the duration of the run. The kbd input has a dis
output with required response time of 2 time units.

-B2-

The Weapon Control (WC) task calls on the FC task and on the Missile Control (MC)
task; however, task MC must first be dynamically initiated by task WC, as indicated by
the dashed arrow between them. Task WC has an input, Weapon Fire (wep). Table Bl
shows it to be Manual. This means that the designer must provide, at run time, one or
more times at which the signal is to occur. Again, these times do not have to be
provided at Block Diagram time as part of the model. They are run time parameters.
Input wep has a single output, which is dis, to occur within 15 time units.

The Block Diagram is not specific as to what event triggers the dynamic initiation of the
MC task. This is left to the Event Diagram. It is assumed that multiple instances of
this task can be initiated, so that, at a given time, there may be more than one such task
active.

Task MC has three inputs. One is the Radar (rad), which is a periodic input whose
outputs are the Missile Control (mis) signal, to occur within 5 time units and the dis
signal, to occur within 10 time units. The second input is a Missile Navigation (mnv)
signal with no output, because the mnv and rad signals are processed together to
produce the mis and dis outputs. It also has a Terminate (ter) signal, which is the
means used in this example to terminate the task. In the real world, the task should
terminate when the missile no longer requires control, ie, when it hits the target or
otherwise terminates its useful flight. For convenience, this input has been made
manual and is coordinated with the wep input, which (as will be seen in the Event
Diagram) causes task MC to be initiated.

The rad, mnv and ter inputs start when a wep input arrives, while the rad and mnv input
generation stops when a ter input arrives. Each wep input inititiates one set of these
inputs, and each ter input stops one set of rad and mnv inputs.

The DFD (also referred to as the Block Diagram) and its associated Input/Output table
present the basic task decomposition and intertask communication of the system.

Step 2: Task Interfaces

Substeps (1), (3) and (4) are all represented in the Event Diagram of Figure B2.
Substep (2), design of the interfacing data structures and decision on method of
communication, are omitted for the example, because they do not at present relate to
the ESDS model.

Step 3: Representation of Timing Requirements by the Event Diagram

In Step 3 each task of the DFD from Step 1 is decomposed into event sequences of the
following nine event types:

1. Task initiation

2. Task entry

3. Sequential processing

4. Call or interrupt to a task entry
S. End of entry

6. End of task

-B3-

8. Delay (non select)
9. Delay (select)

The Event Diagram is shown in Figure B2.

Legend of Symbols

Tasks Inputs
NAV Navigation Processor nav Navigational Sensor (PER=(5]) fc
FC Flight Control kbd Keyboard (RAND=[15]) dis
DIS Display wep Weapon Fire (MAN) mis
WC Weapon Control rad Radar (PER=[8])
MC Missile Control mnv Missile Navigation (PER=[7])
ter Missile Terminate (MAN)
nav FC (t = [10])
P=1
1 2 3 4 5
NAV ~ -=--- (1)-===--~- (7)=vmmmmme- (2)-==wmmremem (4)======-- (5)---=====---
2 3
Nav DIs fc
P=3
6 7 8 9 10 11
FC =-=--- (1)====--- (7)-===mmmmmmme- (2)-=-=---- (4)=m=mm~ (3)==--- (5)~===~~ >>
2 5 1
WC DIs
12 13
-------------- (2)====-~==(4)=-=-==mommee
4
14
-------------- (& D R e DL
A
FC.MC dis
P=2
15 16 17 18
DI§S ----- (1)~==m=m~ (7)vemmmmmmn (2)-====="~ (5)=m==o=mm=m- >> 16
2 2
kbd dis
19 20
--------- (2)-=-=====(5)-=~=-~
1
wep FC
P=3
21 22 23 24 25
WCe ----- (1)------- (7)===mmmmm- (2)-======- (4)-=--mm-- (5)-=-=-momme >> 22
1 | 5
------ >> MC

Fig. B2: Event Diagram of the Exammple

-B4-

Qutputs

Flight Control
Display
Missile Control

P=4
26 27 28 29 30 31
L (1)====--- (7)-=mmmmme (2)-=====-- (3)----- (4)---(5)----- >> 27
3 3 1
mv
32 l 33
--------- (2)-=~==-==-=cmmmesene—ee—(5)--
2
ter
34 l 3s 36
""""" (2)-=-=====(5)-----=(6)

Fig. B2: Event Diagram of the Example (Cont’d)

Each event is identified by two numbers. The number in parentheses is the event type
as given in the above list. The number to the left of the parentheses is a unique serial
number assigned to each event. Where appropriate the specified execution time of an
event appears under the line joining the event to its successor. Of the nine event types
only types 1, 2 and 3 have execution times. Thus, in the diagram corresponding to Task
NAV, event 1 is a type 1 (task initiation) and takes two time units. Event 2 is a type 7
(rendezvous) and has no execution time specified, because it waits until an accept (event
3) arrives. Event 3 is a type 2 (entry). The nav input (See Figure B1) enters here. This
is followed by event 4, which is a call to task FC. Task NAYV is suspended until the call
is processed, whereupon task NAV can continue at event S, which is a type 5, end of
entry. The diagram indicates that control then returns to event 2, which is the
rendezvous. In this way the task is either waiting at the rendezvous or is processing the
nav input within event 3.

Note that the call to FC at event 4 is conditional, as denoted by the notation (t = [10]).
This means that if the call is not accepted at FC within 10 time units, it is to be
cancelled.

The priority of task NAV is 1, as indicated by the P=1 above the NAV symbol. The
Flight Control task (FC) starts at event 6, which is a type 1 (task initiation), runs for two
time units and then comes to the rendezvous at event 7. This is an Ada select
statement, because there are alternative accepts at events 8 and 11. There is also an
else statement at event 14. Note that the entries at events 8 and 11 are from other
tasks {NAV, WC and MC), not from inputs. Events 8 and 11 have respective execution
times of 5 and 4 and then each calls the Display (DIS) task. Note that event 10 triggers
an output (fc), as shown also in the Flight Control block of Figure B2. All three paths
return to the rendezvous at event 7. This is a typical control structure for a task.

Table B1 indicates that the nav input has two outputs. One is fc, which must occur
within 12 time units; the other is dis, which must occur within 15 units. The minimum
execution time for the nav-fc pair is 10 time units. This is determined by tracing the
event path: 3-4-8-9-16-17-10, where events 3, 8 and 17 take 3, 5 and 2 units, respectively.
A required response time of 12 units will probably turn out to be a fairly tight
requirement, because so many calls are made on both the FC and DIS tasks.

-B5-

The Display task (DIS) has two entries, at events 17 and 19. The former is the entry
from task FC. It calculates coordinate information and displays it as the output dis.
The latter is the kbd interrupt. A keyboard cuinmand is inierpreied and appropriate
information is displayed. Table B1 indicates that the kbd input has one output, dis,
which must occur within 2 time units. The table also shows that kbd is a random input
(ie, the pilot does not request data on a periodic basis), over a 15 time unit interval,
starting at time 0. Other, more sophisticated distributions could be added to the system,
if needed.

The Weapon Control task (WC) will initiate a Missile Control task (MC) whenever
there is a weapon fire input (wep) at event 23. These are indicated in the table to be
manual inputs occuring at times 5, 20 and 40.

The Missile Control task (MC) accepts radar input (rad) that tracks the target and
missile navigational sensor input (mnv). These are both periodic, occuring every 8 and
7 time units, respectively. They are initiated with the wep input and terminate with the
ter input, which terminates the missile flight and is another manual input to the MC
task.

Step 4: Running of the ESDS and Removal of Timing Bottlenecks

The loading shown in Table B1 turns out to be quite severe for the design architecture
represented by the Event Diagram of Figure B4. A series of changes were therefore
made, in accordance with the options of Step 4. Table B2 presents the results of each
run along with the design change made from the previous run. The results are given
simply as the number of 1/O failures for each I/O pair. The ESDS provides much more
information than simply the I/O failures. QR-7 presents a detailed description of this
data, but for the purpose of this discussion, the most basic information is the failure of
the system to achieve a required response time, which is referred to here as an I/O
failure.

TABLE B2
Results of a Series of ESDS Runs
----------------------- DESIGN MODIFICATIONS -----=-==c-es---co-secccecacecon coc--—w-- 1/0 FAILURES -------v----
Run Execution time of Task DIS Number of Req’d Response Loading: kbd nav rad wep nav rad Total
event 3 event 8 CONFIG'N PROCESSORS TIME OF rad-dis rad PERIOD dis dis dis dis fc mis
1 3 5 single 2 10 8 1 3 2 1 2 2 11
2 1 2 single 2 10 8 3 3 3 9
3 1 2 split 2 10 8 2 1 2 4 1 10
L} 1 2 split 3 10 8 1 3 4
3 1 2 split 3 14 8 1 2 3
[1 2 split 3 14 12 0

Run 1 corresponds to the design of Figure B2 and the response and loading
specifications of Table B1. The right side of Table B2 records the I/O failures for the
indicated I/O pairs. The total number of such failures in run 1 was 11. The objective
of the subsequent redesigns was to eliminate these failures. Column 4 of the table is
labeled TASK DIS CONFIG'N. "single” refers to the existing, single Display task shown
in Figures B1 and B2. "split” refers to a splitting of the entries within this task into two
tasks to provide greater opportunity for parallel operation. This was indicated as a
queuing bottleneck in Run 2. The split configuration is shown in Figure B3.

-B6-

15 16 17 18
DIS1 ----- (1)------- (7)===eemnn- (2)----=--- (5)==--=------ >> 16
2 2
xbd dis
P=2
37 38 39 40
pIS2 ----- (1)------- (7)==-=mmmmn (2)---=---- (§)--mmmmmeoes >> 38
2 1

Fig. B3: Split Display Configuration

The result of Run 1 was that large queues developed at event 3, the nav input and at
event 8, the entry that NAV calls in FC. This resulted in five failures involving the nav
input. (3 for nav-dis and 2 for nav-fc). There were then ripple effects in DIS, where FC
and MC contended at the same entry (event 17) as well as with the kbd input at event
19. These in turn caused all dis outputs to be affected (1 failure for kbd-dis, 2 for rad-
dis and 1 for wep-dis). The two rad-mis failures were caused by queuing at event 28 of
the rad input, resulting from the fact that when MC would call DIS (at event 30) it
would be suspended for long periods waiting for the DIS bottleneck to clear. The ESDS
analysis shows both the immediate and apparent bottlenecks, as in the case of the nav
queues, as well as the ripple effects. With this diagnositic information in hand the
designer must choose a suitable remedy. In the case of Run 1 it was decided to increase
the processing speed of events 3 and 8.

Changing priorities would not have achieved anything, because the NAV task was
already getting a high priority as a result of the fact that an input interrupt (nav) raises
the called task to the highest priority. Another alternative would have been to reduce
the loading by increasing the nav input interval from 5. This, however, would not be a
software design change, but a specification change, which is the last option selected. At
the systems level it would be regarded as a design change, that might or might not be
acceptable. Thus, priority is given to those changes that the software designer can make
without changing either the hardware configuration (ie number of processors) or the
timing specifications (ie, response times or loading). Clearly, a bottleneck at entries 3
and 8 can be reduced if the proceessing speed of these events can be increased. The
feasibility of this will, in turn, depend upon the algorithms involved, the processor speed,
the skill of the programmer, and the quality of the compiler. This will be determined in
Step 6. The methodology is an iterative one that proceeds through Step 5 and then can
cycle back to any step, as far back as Step 1. Therefore, the designer has the option of
reducing the execution time specification to the programmer in order to achieve the
required performance before resorting to measures beyond the software boundary. In
this case this option was exercized, and the event 3 time was reduced from 3 to 1, while
event 8 was reduced from 5 to 2.

The Run 2 row in Table B2 shows that this clearly was effective. In fact, one may ask
how the new execution times were determined. With the ESDS it is easy to
continuously reduce the time until the desired effect is achieved. Thus, at times 1 and 2
for events 3 and 8, respectively, the five nav-dis and nav-fc failures disappear. However,
this reduction of 5 failures did not show up entirely in the total failures in Run 2. The

-B7-

reason is that more calls were now made from NAV to FC at event 4 and from FC to
DIS at event 9, thus exacerbating the Display (DIS) bottleneck. Hence, the kbd-dis, rad-
dis and rad-mis failures went up, leaving a net improvement overall of only 2 in the
total.

Attention therefore turned to the DIS task. It was decided to change the basic
architecture of the design by splitting DIS into two tasks, called DIS1 and DIS2, as
shown in Figure B3. The purpose is to allow the kbd to be processed in parallel with
the FC and MC calls. As shown in Table B2 for Run 3 it didn't quite work. The
failures were redistributed, and our nav-fc problem that was so nicely cleared up in Run
2, reappeared with a vengeance, going from 0 to 4. Analysis of the ESDS results
showed that (1) The desired parallelism did not occur, because there were not enough
processors to provide real parallel operation, and (2) the two DIS tasks compete for
available processors with FC (all are running at the highest priority, which have been
inherited from input interrupts), as well as with the other tasks, so that although the
nav-dis gets through, the nav-fc does not.

The system is processor bound. No further software solutions can solve the problem;
therefore, in Run 4 another processor is added, and the bottleneck is broken. The total
number of failures drops from 10 to 4. Runs 3 and 4 illustrate the complexity of these
systems inasmuch as a given design change can have unintended or unexpected results,
because of the secondary or ripple effect of changes in systems that are so highly
interrelated. In Run 3 the splitting of a task just redistributed the bottlenecks, and
made some situations worse, that had previously been improved. Overall, the total
failures even increased from 9 to 10, though this is not a significant increase. In Run 4,
on the other hand, the intended effect was achieved, but the rad-dis failures returned to
their former level of 3. Analysis of the run showed the reason for this. The MC call to
DIS from event 30 was found to be queued too long at event 17. This also affected nav-
dis to some extent.

One solution to this problem would be to create yet another separate DIS task to
process the MC and FC calls on DIS1 independently. This would also require another
processor. Another option is to go back to the system designer to see if the
performance requirements can be relaxed. This is the route that was taken in Run S.
The required response time of rad-dis was increased from 10 to 14. Again, the ESDS
could be used to determine the smallest such value that would eliminate all of the
failures, but it is assumed in the example that the system designer would only allow an
increase to 14 time units. Run 5 shows that this was insufficient. It eliminated only one
failure. Next, the load was examined. If the rad input rate could be reduced, the DIS1
load would be reduced, and then both the rad-dis and the nav-dis bottlenecks broken.
This again requires a system design decision regarding the repetition or sampling rate of
the rad input signal. Here the system designer was willing to increase the interval from
8 to 12, and in Run 6 all failures were eliminated.

-BS-

Conclusion

The example has shown that one can design in a systematic way for performance,
despite the complexity of multitasking systems, if there exists an analytic toocl that is
capable of showing the designer where the problems lay and if there is a coordinated
methodology that presents options to solve the problems once the tool has identified
them. The alternative, which corresponds to current practice, is to design for
performance by a trial and error process.

Table B2 is an "end picture” summary of the six runs. In the next report, we will show

the detail of intermediate information that pin-points the bottlenecks and enables the
designer to see both the direct causes of I/O failure as well as the ripple effects.

-B9-

